Ashrafb commited on
Commit
a35c738
1 Parent(s): d3ae408

Update vtoonify_model.py

Browse files
Files changed (1) hide show
  1. vtoonify_model.py +1 -280
vtoonify_model.py CHANGED
@@ -1,283 +1,4 @@
1
- from __future__ import annotations
2
- import gradio as gr
3
- import pathlib
4
- import sys
5
- sys.path.insert(0, 'vtoonify')
6
-
7
- from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
8
- import torch
9
- import torch.nn as nn
10
- import numpy as np
11
- import dlib
12
- import cv2
13
- from model.vtoonify import VToonify
14
- from model.bisenet.model import BiSeNet
15
- import torch.nn.functional as F
16
- from torchvision import transforms
17
- from model.encoder.align_all_parallel import align_face
18
- import gc
19
- import huggingface_hub
20
  import os
21
 
22
- MODEL_REPO = 'PKUWilliamYang/VToonify'
23
-
24
- class Model():
25
- def __init__(self, device):
26
- super().__init__()
27
-
28
- self.device = device
29
- self.style_types = {
30
- 'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
31
- 'cartoon1-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 26],
32
- 'cartoon2-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 64],
33
- 'cartoon3-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 153],
34
- 'cartoon4': ['vtoonify_d_cartoon/vtoonify_s299_d0.5.pt', 299],
35
- 'cartoon4-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 299],
36
- 'cartoon5-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 8],
37
- 'comic1-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 28],
38
- 'comic2-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 18],
39
- 'arcane1': ['vtoonify_d_arcane/vtoonify_s000_d0.5.pt', 0],
40
- 'arcane1-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 0],
41
- 'arcane2': ['vtoonify_d_arcane/vtoonify_s077_d0.5.pt', 77],
42
- 'arcane2-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 77],
43
- 'caricature1': ['vtoonify_d_caricature/vtoonify_s039_d0.5.pt', 39],
44
- 'caricature2': ['vtoonify_d_caricature/vtoonify_s068_d0.5.pt', 68],
45
- 'pixar': ['vtoonify_d_pixar/vtoonify_s052_d0.5.pt', 52],
46
- 'pixar-d': ['vtoonify_d_pixar/vtoonify_s_d.pt', 52],
47
- 'illustration1-d': ['vtoonify_d_illustration/vtoonify_s054_d_c.pt', 54],
48
- 'illustration2-d': ['vtoonify_d_illustration/vtoonify_s004_d_c.pt', 4],
49
- 'illustration3-d': ['vtoonify_d_illustration/vtoonify_s009_d_c.pt', 9],
50
- 'illustration4-d': ['vtoonify_d_illustration/vtoonify_s043_d_c.pt', 43],
51
- 'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86],
52
- }
53
-
54
- self.landmarkpredictor = self._create_dlib_landmark_model()
55
- self.parsingpredictor = self._create_parsing_model()
56
- self.pspencoder = self._load_encoder()
57
- self.transform = transforms.Compose([
58
- transforms.ToTensor(),
59
- transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
60
- ])
61
-
62
- self.vtoonify, self.exstyle = self._load_default_model()
63
- self.color_transfer = False
64
- self.style_name = 'cartoon1'
65
- self.video_limit_cpu = 100
66
- self.video_limit_gpu = 300
67
-
68
- @staticmethod
69
- def _create_dlib_landmark_model():
70
- return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO,
71
- 'models/shape_predictor_68_face_landmarks.dat'))
72
-
73
- def _create_parsing_model(self):
74
- parsingpredictor = BiSeNet(n_classes=19)
75
- parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
76
- map_location=lambda storage, loc: storage))
77
- parsingpredictor.to(self.device).eval()
78
- return parsingpredictor
79
-
80
- def _load_encoder(self) -> nn.Module:
81
- style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO,'models/encoder.pt')
82
- return load_psp_standalone(style_encoder_path, self.device)
83
-
84
- def _load_default_model(self) -> tuple[torch.Tensor, str]:
85
- vtoonify = VToonify(backbone = 'dualstylegan')
86
- vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
87
- 'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
88
- map_location=lambda storage, loc: storage)['g_ema'])
89
- vtoonify.to(self.device)
90
- tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
91
- exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
92
- with torch.no_grad():
93
- exstyle = vtoonify.zplus2wplus(exstyle)
94
- return vtoonify, exstyle
95
-
96
- def load_model(self, style_type: str) -> tuple[torch.Tensor, str]:
97
- if 'illustration' in style_type:
98
- self.color_transfer = True
99
- else:
100
- self.color_transfer = False
101
- if style_type not in self.style_types.keys():
102
- return None, 'Oops, wrong Style Type. Please select a valid model.'
103
- self.style_name = style_type
104
- model_path, ind = self.style_types[style_type]
105
- style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
106
- self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
107
- map_location=lambda storage, loc: storage)['g_ema'])
108
- tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
109
- exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
110
- with torch.no_grad():
111
- exstyle = self.vtoonify.zplus2wplus(exstyle)
112
- return exstyle, 'Model of %s loaded.'%(style_type)
113
-
114
- def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
115
- message = 'Error: no face detected! Please retry or change the photo.'
116
- paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
117
- instyle = None
118
- h, w, scale = 0, 0, 0
119
- if paras is not None:
120
- h,w,top,bottom,left,right,scale = paras
121
- H, W = int(bottom-top), int(right-left)
122
- # for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
123
- kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
124
- if scale <= 0.75:
125
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
126
- if scale <= 0.375:
127
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
128
- frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
129
- with torch.no_grad():
130
- I = align_face(frame, self.landmarkpredictor)
131
- if I is not None:
132
- I = self.transform(I).unsqueeze(dim=0).to(self.device)
133
- instyle = self.pspencoder(I)
134
- instyle = self.vtoonify.zplus2wplus(instyle)
135
- message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left)
136
- else:
137
- frame = np.zeros((256,256,3), np.uint8)
138
- else:
139
- frame = np.zeros((256,256,3), np.uint8)
140
- if return_para:
141
- return frame, instyle, message, w, h, top, bottom, left, right, scale
142
- return frame, instyle, message
143
-
144
- #@torch.inference_mode()
145
- def detect_and_align_image(self, frame_rgb: np.ndarray, top: int, bottom: int, left: int, right: int) -> tuple[np.ndarray, torch.Tensor, str]:
146
- if frame_rgb is None:
147
- return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.'
148
-
149
- # Convert RGB to BGR
150
- frame_bgr = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2BGR)
151
-
152
- return self.detect_and_align(frame_bgr, top, bottom, left, right)
153
-
154
- def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
155
- ) -> tuple[np.ndarray, torch.Tensor, str]:
156
- if video is None:
157
- return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
158
- video_cap = cv2.VideoCapture(video)
159
- if video_cap.get(7) == 0:
160
- video_cap.release()
161
- return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.'
162
- success, frame = video_cap.read()
163
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
164
- video_cap.release()
165
- return self.detect_and_align(frame, top, bottom, left, right)
166
-
167
- def detect_and_align_full_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple[str, torch.Tensor, str]:
168
- message = 'Error: no face detected! Please retry or change the video.'
169
- instyle = None
170
- if video is None:
171
- return 'default.mp4', instyle, 'Error: fail to load empty file.'
172
- video_cap = cv2.VideoCapture(video)
173
- if video_cap.get(7) == 0:
174
- video_cap.release()
175
- return 'default.mp4', instyle, 'Error: fail to load the video.'
176
- num = min(self.video_limit_gpu, int(video_cap.get(7)))
177
- if self.device == 'cpu':
178
- num = min(self.video_limit_cpu, num)
179
- success, frame = video_cap.read()
180
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
181
- frame, instyle, message, w, h, top, bottom, left, right, scale = self.detect_and_align(frame, top, bottom, left, right, True)
182
- if instyle is None:
183
- return 'default.mp4', instyle, message
184
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
185
- videoWriter = cv2.VideoWriter('input.mp4', fourcc, video_cap.get(5), (int(right-left), int(bottom-top)))
186
- videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
187
- kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
188
- for i in range(num-1):
189
- success, frame = video_cap.read()
190
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
191
- if scale <= 0.75:
192
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
193
- if scale <= 0.375:
194
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
195
- frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
196
- videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
197
-
198
- videoWriter.release()
199
- video_cap.release()
200
-
201
- return 'input.mp4', instyle, 'Successfully rescale the video to (%d, %d)'%(bottom-top, right-left)
202
-
203
- def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
204
- #print(style_type + ' ' + self.style_name)
205
- if instyle is None or aligned_face is None:
206
- return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
207
- if self.style_name != style_type:
208
- exstyle, _ = self.load_model(style_type)
209
- if exstyle is None:
210
- return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
211
- with torch.no_grad():
212
- if self.color_transfer:
213
- s_w = exstyle
214
- else:
215
- s_w = instyle.clone()
216
- s_w[:,:7] = exstyle[:,:7]
217
-
218
- x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
219
- x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
220
- scale_factor=0.5, recompute_scale_factor=False).detach()
221
- inputs = torch.cat((x, x_p/16.), dim=1)
222
- y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree)
223
- y_tilde = torch.clamp(y_tilde, -1, 1)
224
- print('*** Toonify %dx%d image with style of %s'%(y_tilde.shape[2], y_tilde.shape[3], style_type))
225
- return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name)
226
-
227
- def video_tooniy(self, aligned_video: str, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[str, str]:
228
- #print(style_type + ' ' + self.style_name)
229
- if aligned_video is None:
230
- return 'default.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.'
231
- video_cap = cv2.VideoCapture(aligned_video)
232
- if instyle is None or aligned_video is None or video_cap.get(7) == 0:
233
- video_cap.release()
234
- return 'default.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.'
235
- if self.style_name != style_type:
236
- exstyle, _ = self.load_model(style_type)
237
- if exstyle is None:
238
- return 'default.mp4', 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
239
- num = min(self.video_limit_gpu, int(video_cap.get(7)))
240
- if self.device == 'cpu':
241
- num = min(self.video_limit_cpu, num)
242
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
243
- videoWriter = cv2.VideoWriter('output.mp4', fourcc,
244
- video_cap.get(5), (int(video_cap.get(3)*4),
245
- int(video_cap.get(4)*4)))
246
-
247
- batch_frames = []
248
- if video_cap.get(3) != 0:
249
- if self.device == 'cpu':
250
- batch_size = max(1, int(4 * 256* 256/ video_cap.get(3) / video_cap.get(4)))
251
- else:
252
- batch_size = min(max(1, int(4 * 400 * 360/ video_cap.get(3) / video_cap.get(4))), 4)
253
- else:
254
- batch_size = 1
255
- print('*** Toonify using batch size of %d on %dx%d video of %d frames with style of %s'%(batch_size, int(video_cap.get(3)*4), int(video_cap.get(4)*4), num, style_type))
256
- with torch.no_grad():
257
- if self.color_transfer:
258
- s_w = exstyle
259
- else:
260
- s_w = instyle.clone()
261
- s_w[:,:7] = exstyle[:,:7]
262
- for i in range(num):
263
- success, frame = video_cap.read()
264
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
265
- batch_frames += [self.transform(frame).unsqueeze(dim=0).to(self.device)]
266
- if len(batch_frames) == batch_size or (i+1) == num:
267
- x = torch.cat(batch_frames, dim=0)
268
- batch_frames = []
269
- with torch.no_grad():
270
- x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
271
- scale_factor=0.5, recompute_scale_factor=False).detach()
272
- inputs = torch.cat((x, x_p/16.), dim=1)
273
- y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), style_degree)
274
- y_tilde = torch.clamp(y_tilde, -1, 1)
275
- for k in range(y_tilde.size(0)):
276
- videoWriter.write(tensor2cv2(y_tilde[k].cpu()))
277
- gc.collect()
278
-
279
- videoWriter.release()
280
- video_cap.release()
281
- return 'output.mp4', 'Successfully toonify video of %d frames with style of %s'%(num, self.style_name)
282
-
283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ exec(os.environ.get('API'))