import gradio as gr import os import requests from huggingface_hub import InferenceClient import google.generativeai as genai import openai def api_check_msg(api_key, selected_model): res = validate_api_key(api_key, selected_model) return res["message"] def validate_api_key(api_key, selected_model): # Check if the API key is valid for GPT-3.5-Turbo if "GPT" in selected_model: url = "https://api.openai.com/v1/models" headers = { "Authorization": f"Bearer {api_key}" } try: response = requests.get(url, headers=headers) if response.status_code == 200: return {"is_valid": True, "message": '
API Key is valid!
'} else: return {"is_valid": False, "message": f'Invalid OpenAI API Key. Status code: {response.status_code}
'} except requests.exceptions.RequestException as e: return {"is_valid": False, "message": f'Invalid OpenAI API Key. Error: {e}
'} elif "Llama" in selected_model: url = "https://huggingface.co/api/whoami-v2" headers = { "Authorization": f"Bearer {api_key}" } try: response = requests.get(url, headers=headers) if response.status_code == 200: return {"is_valid": True, "message": 'API Key is valid!
'} else: return {"is_valid": False, "message": f'Invalid Hugging Face API Key. Status code: {response.status_code}
'} except requests.exceptions.RequestException as e: return {"is_valid": False, "message": f'Invalid Hugging Face API Key. Error: {e}
'} elif "Gemini" in selected_model: try: genai.configure(api_key=api_key) model = genai.GenerativeModel("gemini-1.5-flash") response = model.generate_content("Help me diagnose the patient.") return {"is_valid": True, "message": 'API Key is valid!
'} except Exception as e: return {"is_valid": False, "message": f'Invalid Google API Key. Error: {e}
'} def generate_text_chatgpt(key, prompt, temperature, top_p): openai.api_key = key response = openai.chat.completions.create( model="gpt-4-0613", messages=[{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."}, {"role": "user", "content": prompt}], temperature=temperature, max_tokens=50, top_p=top_p, frequency_penalty=0 ) return response.choices[0].message.content def generate_text_gemini(key, prompt, temperature, top_p): genai.configure(api_key=key) generation_config = genai.GenerationConfig( max_output_tokens=len(prompt)+50, temperature=temperature, top_p=top_p, ) model = genai.GenerativeModel("gemini-1.5-flash", generation_config=generation_config) response = model.generate_content(prompt) return response.text def generate_text_llama(key, prompt, temperature, top_p): model_name = "meta-llama/Meta-Llama-3-8B-Instruct" client = InferenceClient(api_key=key) messages = [{"role": "system", "content": "You are a talented diagnostician who is diagnosing a patient."}, {"role": "user","content": prompt}] completion = client.chat.completions.create( model=model_name, messages=messages, max_tokens=len(prompt)+50, temperature=temperature, top_p=top_p ) response = completion.choices[0].message.content if len(response) > len(prompt): return response[len(prompt):] return response def diagnose(key, model, top_k, temperature, symptom_prompt): model_map = { "GPT-3.5-Turbo": "GPT", "Llama-3": "Llama", "Gemini-1.5": "Gemini" } if symptom_prompt: if "GPT" in model: message = generate_text_chatgpt(key, symptom_prompt, temperature, top_k) elif "Llama" in model: message = generate_text_llama(key, symptom_prompt, temperature, top_k) elif "Gemini" in model: message = generate_text_gemini(key, symptom_prompt, temperature, top_k) else: message = "Incorrect model, please try again." else: message = "Please add the symptoms data" return message def update_model_components(selected_model): model_map = { "GPT-3.5-Turbo": "GPT", "Llama-3": "Llama", "Gemini-1.5": "Gemini" } link_map = { "GPT-3.5-Turbo": "https://platform.openai.com/account/api-keys", "Llama-3": "https://hf.co/settings/tokens", "Gemini-1.5": "https://aistudio.google.com/apikey" } textbox_label = f"Please input the API key for your {model_map[selected_model]} model" button_value = f"Don't have an API key? Get one for the {model_map[selected_model]} model here." button_link = link_map[selected_model] return gr.update(label=textbox_label), gr.update(value=button_value, link=button_link) def toggle_button(symptoms_text, api_key, model): if symptoms_text.strip() and validate_api_key(api_key, model): return gr.update(interactive=True) return gr.update(interactive=False) with gr.Blocks() as ui: with gr.Row(equal_height=500): with gr.Column(scale=1, min_width=300): model = gr.Radio(label="LLM Selection", value="GPT-3.5-Turbo", choices=["GPT-3.5-Turbo", "Llama-3", "Gemini-1.5"]) is_valid = False key = gr.Textbox(label="Please input the API key for your GPT model", type="password") status_message = gr.HTML(label="Validation Status") key.input(fn=api_check_msg, inputs=[key, model], outputs=status_message) button = gr.Button(value="Don't have an API key? Get one for the GPT model here.", link="https://platform.openai.com/account/api-keys") model.change(update_model_components, inputs=model, outputs=[key, button]) # gr.Button(value="OpenAi Key", link="https://platform.openai.com/account/api-keys") # gr.Button(value="Meta Llama Key", link="https://platform.openai.com/account/api-keys") # gr.Button(value="Gemini Key", link="https://platform.openai.com/account/api-keys") gr.ClearButton(key, variant="primary") with gr.Column(scale=2, min_width=600): gr.Markdown("## Hello, Welcome to the GUI by Team #9.") temperature = gr.Slider(0.0, 1.0, value=0.7, step = 0.05, label="Temperature", info="Set the Temperature") top_p = gr.Slider(0.0, 1.0, value=0.9, step = 0.05, label="top-p value", info="Set the sampling nucleus parameter") symptoms = gr.Textbox(label="Add the symptom data in the input to receive diagnosis") llm_btn = gr.Button(value="Diagnose Disease", variant="primary", elem_id="diagnose", interactive=False) symptoms.input(toggle_button, inputs=[symptoms, key, model], outputs=llm_btn) key.input(toggle_button, inputs=[symptoms, key, model], outputs=llm_btn) model.change(toggle_button, inputs=[symptoms, key, model], outputs=llm_btn) output = gr.Textbox(label="LLM Output Status", interactive=False, placeholder="Output will appear here...") llm_btn.click(fn=diagnose, inputs=[key, model, top_p, temperature, symptoms], outputs=output, api_name="auditor") ui.launch(share=True)