Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import json | |
import os | |
import pathlib | |
import tempfile | |
from transformers import BatchFeature | |
from transformers.image_utils import AnnotationFormat, AnnotionFormat | |
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision | |
from transformers.utils import is_torch_available, is_vision_available | |
if is_torch_available(): | |
import numpy as np | |
import torch | |
if is_vision_available(): | |
from PIL import Image | |
def prepare_image_inputs( | |
batch_size, | |
min_resolution, | |
max_resolution, | |
num_channels, | |
size_divisor=None, | |
equal_resolution=False, | |
numpify=False, | |
torchify=False, | |
): | |
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, | |
or a list of PyTorch tensors if one specifies torchify=True. | |
One can specify whether the images are of the same resolution or not. | |
""" | |
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" | |
image_inputs = [] | |
for i in range(batch_size): | |
if equal_resolution: | |
width = height = max_resolution | |
else: | |
# To avoid getting image width/height 0 | |
if size_divisor is not None: | |
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor` | |
min_resolution = max(size_divisor, min_resolution) | |
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2) | |
image_inputs.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8)) | |
if not numpify and not torchify: | |
# PIL expects the channel dimension as last dimension | |
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs] | |
if torchify: | |
image_inputs = [torch.from_numpy(image) for image in image_inputs] | |
return image_inputs | |
def prepare_video(num_frames, num_channels, width=10, height=10, numpify=False, torchify=False): | |
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors.""" | |
video = [] | |
for i in range(num_frames): | |
video.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8)) | |
if not numpify and not torchify: | |
# PIL expects the channel dimension as last dimension | |
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video] | |
if torchify: | |
video = [torch.from_numpy(frame) for frame in video] | |
return video | |
def prepare_video_inputs( | |
batch_size, | |
num_frames, | |
num_channels, | |
min_resolution, | |
max_resolution, | |
equal_resolution=False, | |
numpify=False, | |
torchify=False, | |
): | |
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if | |
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True. | |
One can specify whether the videos are of the same resolution or not. | |
""" | |
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" | |
video_inputs = [] | |
for i in range(batch_size): | |
if equal_resolution: | |
width = height = max_resolution | |
else: | |
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2) | |
video = prepare_video( | |
num_frames=num_frames, | |
num_channels=num_channels, | |
width=width, | |
height=height, | |
numpify=numpify, | |
torchify=torchify, | |
) | |
video_inputs.append(video) | |
return video_inputs | |
class ImageProcessingTestMixin: | |
test_cast_dtype = None | |
def test_image_processor_to_json_string(self): | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
obj = json.loads(image_processor.to_json_string()) | |
for key, value in self.image_processor_dict.items(): | |
self.assertEqual(obj[key], value) | |
def test_image_processor_to_json_file(self): | |
image_processor_first = self.image_processing_class(**self.image_processor_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
json_file_path = os.path.join(tmpdirname, "image_processor.json") | |
image_processor_first.to_json_file(json_file_path) | |
image_processor_second = self.image_processing_class.from_json_file(json_file_path) | |
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) | |
def test_image_processor_from_and_save_pretrained(self): | |
image_processor_first = self.image_processing_class(**self.image_processor_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
saved_file = image_processor_first.save_pretrained(tmpdirname)[0] | |
check_json_file_has_correct_format(saved_file) | |
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname) | |
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) | |
def test_init_without_params(self): | |
image_processor = self.image_processing_class() | |
self.assertIsNotNone(image_processor) | |
def test_cast_dtype_device(self): | |
if self.test_cast_dtype is not None: | |
# Initialize image_processor | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
# create random PyTorch tensors | |
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) | |
encoding = image_processor(image_inputs, return_tensors="pt") | |
# for layoutLM compatiblity | |
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) | |
self.assertEqual(encoding.pixel_values.dtype, torch.float32) | |
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16) | |
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) | |
self.assertEqual(encoding.pixel_values.dtype, torch.float16) | |
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16) | |
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) | |
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16) | |
with self.assertRaises(TypeError): | |
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu") | |
# Try with text + image feature | |
encoding = image_processor(image_inputs, return_tensors="pt") | |
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])}) | |
encoding = encoding.to(torch.float16) | |
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) | |
self.assertEqual(encoding.pixel_values.dtype, torch.float16) | |
self.assertEqual(encoding.input_ids.dtype, torch.long) | |
def test_call_pil(self): | |
# Initialize image_processing | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random PIL images | |
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) | |
for image in image_inputs: | |
self.assertIsInstance(image, Image.Image) | |
# Test not batched input | |
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) | |
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) | |
# Test batched | |
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) | |
self.assertEqual( | |
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) | |
) | |
def test_call_numpy(self): | |
# Initialize image_processing | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random numpy tensors | |
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) | |
for image in image_inputs: | |
self.assertIsInstance(image, np.ndarray) | |
# Test not batched input | |
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) | |
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) | |
# Test batched | |
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) | |
self.assertEqual( | |
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) | |
) | |
def test_call_pytorch(self): | |
# Initialize image_processing | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random PyTorch tensors | |
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) | |
for image in image_inputs: | |
self.assertIsInstance(image, torch.Tensor) | |
# Test not batched input | |
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) | |
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) | |
# Test batched | |
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) | |
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
self.assertEqual( | |
tuple(encoded_images.shape), | |
(self.image_processor_tester.batch_size, *expected_output_image_shape), | |
) | |
def test_call_numpy_4_channels(self): | |
# Test that can process images which have an arbitrary number of channels | |
# Initialize image_processing | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
# create random numpy tensors | |
self.image_processor_tester.num_channels = 4 | |
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) | |
# Test not batched input | |
encoded_images = image_processor( | |
image_inputs[0], | |
return_tensors="pt", | |
input_data_format="channels_first", | |
image_mean=0, | |
image_std=1, | |
).pixel_values | |
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) | |
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) | |
# Test batched | |
encoded_images = image_processor( | |
image_inputs, | |
return_tensors="pt", | |
input_data_format="channels_first", | |
image_mean=0, | |
image_std=1, | |
).pixel_values | |
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) | |
self.assertEqual( | |
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) | |
) | |
def test_image_processor_preprocess_arguments(self): | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
if hasattr(image_processor, "_valid_processor_keys") and hasattr(image_processor, "preprocess"): | |
preprocess_parameter_names = inspect.getfullargspec(image_processor.preprocess).args | |
preprocess_parameter_names.remove("self") | |
preprocess_parameter_names.sort() | |
valid_processor_keys = image_processor._valid_processor_keys | |
valid_processor_keys.sort() | |
self.assertEqual(preprocess_parameter_names, valid_processor_keys) | |
class AnnotationFormatTestMixin: | |
# this mixin adds a test to assert that usages of the | |
# to-be-deprecated `AnnotionFormat` continue to be | |
# supported for the time being | |
def test_processor_can_use_legacy_annotation_format(self): | |
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict() | |
fixtures_path = pathlib.Path(__file__).parent / "fixtures" / "tests_samples" / "COCO" | |
with open(fixtures_path / "coco_annotations.txt", "r") as f: | |
detection_target = json.loads(f.read()) | |
detection_annotations = {"image_id": 39769, "annotations": detection_target} | |
detection_params = { | |
"images": Image.open(fixtures_path / "000000039769.png"), | |
"annotations": detection_annotations, | |
"return_tensors": "pt", | |
} | |
with open(fixtures_path / "coco_panoptic_annotations.txt", "r") as f: | |
panoptic_target = json.loads(f.read()) | |
panoptic_annotations = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": panoptic_target} | |
masks_path = pathlib.Path(fixtures_path / "coco_panoptic") | |
panoptic_params = { | |
"images": Image.open(fixtures_path / "000000039769.png"), | |
"annotations": panoptic_annotations, | |
"return_tensors": "pt", | |
"masks_path": masks_path, | |
} | |
test_cases = [ | |
("coco_detection", detection_params), | |
("coco_panoptic", panoptic_params), | |
(AnnotionFormat.COCO_DETECTION, detection_params), | |
(AnnotionFormat.COCO_PANOPTIC, panoptic_params), | |
(AnnotationFormat.COCO_DETECTION, detection_params), | |
(AnnotationFormat.COCO_PANOPTIC, panoptic_params), | |
] | |
def _compare(a, b) -> None: | |
if isinstance(a, (dict, BatchFeature)): | |
self.assertEqual(a.keys(), b.keys()) | |
for k, v in a.items(): | |
_compare(v, b[k]) | |
elif isinstance(a, list): | |
self.assertEqual(len(a), len(b)) | |
for idx in range(len(a)): | |
_compare(a[idx], b[idx]) | |
elif isinstance(a, torch.Tensor): | |
self.assertTrue(torch.allclose(a, b, atol=1e-3)) | |
elif isinstance(a, str): | |
self.assertEqual(a, b) | |
for annotation_format, params in test_cases: | |
with self.subTest(annotation_format): | |
image_processor_params = {**image_processor_dict, **{"format": annotation_format}} | |
image_processor_first = self.image_processing_class(**image_processor_params) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
image_processor_first.save_pretrained(tmpdirname) | |
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname) | |
# check the 'format' key exists and that the dicts of the | |
# first and second processors are equal | |
self.assertIn("format", image_processor_first.to_dict().keys()) | |
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) | |
# perform encoding using both processors and compare | |
# the resulting BatchFeatures | |
first_encoding = image_processor_first(**params) | |
second_encoding = image_processor_second(**params) | |
_compare(first_encoding, second_encoding) | |