File size: 7,003 Bytes
31dfffa
 
 
 
cf7e069
 
193965e
cf7e069
 
 
31dfffa
193965e
 
 
 
 
99753e8
 
193965e
 
 
 
 
 
be58d59
193965e
 
 
 
31dfffa
 
 
 
 
193965e
31dfffa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b50ef3
31dfffa
cf7e069
31dfffa
 
 
 
 
193965e
31dfffa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193965e
31dfffa
 
 
 
 
 
 
 
 
193965e
 
be58d59
 
 
 
 
 
193965e
 
 
31dfffa
 
 
 
193965e
31dfffa
193965e
 
 
31dfffa
 
193965e
 
 
2ac6d9c
 
 
 
193965e
31dfffa
 
 
193965e
31dfffa
 
cf7e069
31dfffa
cf7e069
 
31dfffa
193965e
31dfffa
 
cf7e069
31dfffa
 
 
 
 
 
 
 
 
193965e
 
 
 
 
 
31dfffa
193965e
 
 
 
31dfffa
 
 
 
193965e
 
31dfffa
 
cf7e069
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import torch
import os
from faster_whisper import WhisperModel
from moviepy.video.io.VideoFileClip import VideoFileClip
import logging
import google.generativeai as genai

# Suppress moviepy logs
logging.getLogger("moviepy").setLevel(logging.ERROR)

# Configure Gemini API
genai.configure(api_key=os.environ["GEMINI_API_KEY"])

# Create the Gemini model
generation_config = {
    "temperature": 1,
    "top_p": 0.95,
    "top_k": 40,
    "max_output_tokens": 8192,
    "response_mime_type": "text/plain",
}

model = genai.GenerativeModel(
    model_name="gemini-2.0-flash-exp",
    generation_config=generation_config,
)

# Define the Whisper model and device
MODEL_NAME = "Systran/faster-whisper-large-v3"
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float32" if device == "cuda" else "int8"

# Load the Whisper model
whisper_model = WhisperModel(MODEL_NAME, device=device, compute_type=compute_type)

# List of all supported languages in Whisper
SUPPORTED_LANGUAGES = [
    "Auto Detect", "English", "Chinese", "German", "Spanish", "Russian", "Korean", 
    "French", "Japanese", "Portuguese", "Turkish", "Polish", "Catalan", "Dutch", 
    "Arabic", "Swedish", "Italian", "Indonesian", "Hindi", "Finnish", "Vietnamese", 
    "Hebrew", "Ukrainian", "Greek", "Malay", "Czech", "Romanian", "Danish", 
    "Hungarian", "Tamil", "Norwegian", "Thai", "Urdu", "Croatian", "Bulgarian", 
    "Lithuanian", "Latin", "Maori", "Malayalam", "Welsh", "Slovak", "Telugu", 
    "Persian", "Latvian", "Bengali", "Serbian", "Azerbaijani", "Slovenian", 
    "Kannada", "Estonian", "Macedonian", "Breton", "Basque", "Icelandic", 
    "Armenian", "Nepali", "Mongolian", "Bosnian", "Kazakh", "Albanian", 
    "Swahili", "Galician", "Marathi", "Punjabi", "Sinhala", "Khmer", "Shona", 
    "Yoruba", "Somali", "Afrikaans", "Occitan", "Georgian", "Belarusian", 
    "Tajik", "Sindhi", "Gujarati", "Amharic", "Yiddish", "Lao", "Uzbek", 
    "Faroese", "Haitian Creole", "Pashto", "Turkmen", "Nynorsk", "Maltese", 
    "Sanskrit", "Luxembourgish", "Burmese", "Tibetan", "Tagalog", "Malagasy", 
    "Assamese", "Tatar", "Hawaiian", "Lingala", "Hausa", "Bashkir", "Javanese", 
    "Sundanese"
]

def extract_audio_from_video(video_file):
    """Extract audio from a video file and save it as a WAV file."""
    video = VideoFileClip(video_file)
    audio_file = "extracted_audio.wav"
    video.audio.write_audiofile(audio_file, fps=16000, logger=None)  # Suppress logs
    return audio_file

def generate_subtitles(audio_file, language="Auto Detect"):
    """Generate subtitles from an audio file using Whisper."""
    # Transcribe the audio
    segments, info = whisper_model.transcribe(
        audio_file,
        task="transcribe",
        language=None if language == "Auto Detect" else language.lower(),
        word_timestamps=True
    )
    
    # Generate SRT format subtitles
    srt_subtitles = ""
    for i, segment in enumerate(segments, start=1):
        start_time = segment.start
        end_time = segment.end
        text = segment.text.strip()
        
        # Format timestamps for SRT
        start_time_srt = format_timestamp(start_time)
        end_time_srt = format_timestamp(end_time)
        
        # Add to SRT
        srt_subtitles += f"{i}\n{start_time_srt} --> {end_time_srt}\n{text}\n\n"
    
    return srt_subtitles, info.language

def format_timestamp(seconds):
    """Convert seconds to SRT timestamp format (HH:MM:SS,mmm)."""
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    seconds = seconds % 60
    milliseconds = int((seconds - int(seconds)) * 1000)
    return f"{hours:02}:{minutes:02}:{int(seconds):02},{milliseconds:03}"

def translate_srt(srt_text, target_language):
    """Translate an SRT file while preserving timestamps."""
    # Magic prompt for Gemini
    prompt = f"Translate the following SRT subtitles into {target_language}. Preserve the SRT format (timestamps and structure). Translate only the text after the timestamp. Do not add explanations or extra text.\n\n{srt_text}"
    
    # Send the prompt to Gemini
    response = model.generate_content(prompt)
    return response.text

def process_video(video_file, language="Auto Detect", translate_to=None):
    """Process a video file to generate and translate subtitles."""
    # Extract audio from the video
    audio_file = extract_audio_from_video(video_file)
    
    # Generate subtitles
    subtitles, detected_language = generate_subtitles(audio_file, language)
    
    # Save original subtitles to an SRT file
    original_srt_file = "original_subtitles.srt"
    with open(original_srt_file, "w", encoding="utf-8") as f:
        f.write(subtitles)
    
    # Translate subtitles if a target language is provided
    translated_srt_file = None
    if translate_to and translate_to != "None":
        translated_subtitles = translate_srt(subtitles, translate_to)
        translated_srt_file = "translated_subtitles.srt"
        with open(translated_srt_file, "w", encoding="utf-8") as f:
            f.write(translated_subtitles)
    
    # Clean up extracted audio file
    os.remove(audio_file)
    
    return original_srt_file, translated_srt_file, detected_language

# Define the Gradio interface
with gr.Blocks(title="AutoSubGen - AI Video Subtitle Generator") as demo:
    # Header
    with gr.Column():
        gr.Markdown("# 🎥 AutoSubGen")
        gr.Markdown("### AI-Powered Video Subtitle Generator")
        gr.Markdown("Automatically generate and translate subtitles for your videos in **SRT format**. Supports **100+ languages** and **auto-detection**.")
    
    # Main content
    with gr.Tab("Generate Subtitles"):
        gr.Markdown("### Upload a video file to generate subtitles.")
        with gr.Row():
            video_input = gr.Video(label="Upload Video File", scale=2)
            language_dropdown = gr.Dropdown(
                choices=SUPPORTED_LANGUAGES,
                label="Select Language",
                value="Auto Detect",
                scale=1
            )
            translate_to_dropdown = gr.Dropdown(
                choices=["None"] + SUPPORTED_LANGUAGES[1:],  # Exclude "Auto Detect"
                label="Translate To",
                value="None",
                scale=1
            )
        generate_button = gr.Button("Generate Subtitles", variant="primary")
        with gr.Row():
            original_subtitle_output = gr.File(label="Download Original Subtitles (SRT)")
            translated_subtitle_output = gr.File(label="Download Translated Subtitles (SRT)")
        detected_language_output = gr.Textbox(label="Detected Language")
    
    # Link button to function
    generate_button.click(
        process_video,
        inputs=[video_input, language_dropdown, translate_to_dropdown],
        outputs=[original_subtitle_output, translated_subtitle_output, detected_language_output]
    )

# Launch the Gradio interface with a public link
demo.launch(share=True)