bwook's picture
Rename web.py to app.py
7e0880a verified
raw
history blame
13.4 kB
import os
import pathlib
import gradio as gr
import pandas as pd
import yaml
from autorag.evaluator import Evaluator
from src.runner import GradioStreamRunner
root_dir = os.path.dirname(os.path.realpath(__file__))
# Paths to example files
config_dir = os.path.join(root_dir, "config")
# Non-GPU Examples
non_gpu = os.path.join(config_dir, "non_gpu")
simple_openai = os.path.join(non_gpu, "simple_openai.yaml")
simple_openai_korean = os.path.join(non_gpu, "simple_openai_korean.yaml")
compact_openai = os.path.join(non_gpu, "compact_openai.yaml")
compact_openai_korean = os.path.join(non_gpu, "compact_openai_korean.yaml")
half_openai = os.path.join(non_gpu, "half_openai.yaml")
half_openai_korean = os.path.join(non_gpu, "half_openai_korean.yaml")
full_openai = os.path.join(non_gpu, "full_no_rerank_openai.yaml")
non_gpu_examples_list = [
simple_openai, simple_openai_korean, compact_openai, compact_openai_korean, half_openai, half_openai_korean,
full_openai
]
non_gpu_examples = list(map(lambda x: [x], non_gpu_examples_list))
# GPU Examples
gpu = os.path.join(config_dir, "gpu")
compact_openai_gpu = os.path.join(gpu, "compact_openai.yaml")
compact_openai_korean_gpu = os.path.join(gpu, "compact_openai_korean.yaml")
half_openai_gpu = os.path.join(gpu, "half_openai.yaml")
half_openai_korean_gpu = os.path.join(gpu, "half_openai_korean.yaml")
full_openai_gpu = os.path.join(gpu, "full_no_rerank_openai.yaml")
gpu_examples_list = [
compact_openai_gpu, compact_openai_korean_gpu, half_openai_gpu, half_openai_korean_gpu, full_openai_gpu
]
gpu_examples = list(map(lambda x: [x], gpu_examples_list))
# GPU + API
gpu_api = os.path.join(config_dir, "gpu_api")
compact_openai_gpu_api = os.path.join(gpu_api, "compact_openai.yaml")
compact_openai_korean_gpu_api = os.path.join(gpu_api, "compact_openai_korean.yaml")
half_openai_gpu_api = os.path.join(gpu_api, "half_openai.yaml")
half_openai_korean_gpu_api = os.path.join(gpu_api, "half_openai_korean.yaml")
full_openai_gpu_api = os.path.join(gpu_api, "full_no_rerank_openai.yaml")
gpu_api_examples_list = [
compact_openai_gpu_api, compact_openai_korean_gpu_api, half_openai_gpu_api, half_openai_korean_gpu_api,
full_openai_gpu_api
]
gpu_api_examples = list(map(lambda x: [x], gpu_api_examples_list))
example_qa_parquet = os.path.join(root_dir, "sample_data", "qa_data_sample.parquet")
example_corpus_parquet = os.path.join(root_dir, "sample_data", "corpus_data_sample.parquet")
def display_yaml(file):
if file is None:
return "No file uploaded"
with open(file.name, "r") as f:
content = yaml.safe_load(f)
return yaml.dump(content, default_flow_style=False)
def display_parquet(file):
if file is None:
return pd.DataFrame()
df = pd.read_parquet(file.name)
return df
def check_files(yaml_file, qa_file, corpus_file):
if yaml_file is not None and qa_file is not None and corpus_file is not None:
return gr.update(visible=True)
return gr.update(visible=False)
def run_trial(file, yaml_file, qa_file, corpus_file):
project_dir = os.path.join(pathlib.PurePath(file.name).parent, "project")
evaluator = Evaluator(qa_file, corpus_file, project_dir=project_dir)
evaluator.start_trial(yaml_file, skip_validation=True)
return ("❗Trial Completed❗ "
"Go to Chat Tab to start the conversation")
def set_environment_variable(api_name, api_key):
if api_name and api_key:
try:
os.environ[api_name] = api_key
return "✅ Setting Complete ✅"
except Exception as e:
return f"Error setting environment variable: {e}"
return "API Name or Key is missing"
def stream_default(file, history):
# Default YAML Runner
yaml_path = os.path.join(config_dir, "extracted_sample.yaml")
project_dir = os.path.join(
pathlib.PurePath(file.name).parent, "project"
)
default_gradio_runner = GradioStreamRunner.from_yaml(yaml_path, project_dir)
history.append({"role": "assistant", "content": ""})
# Stream responses for the chatbox
for default_output in default_gradio_runner.stream_run(history[-2]["content"]):
stream_delta = default_output[0]
history[-1]["content"] = stream_delta
yield history
def stream_optimized(file, history):
# Custom YAML Runner
trial_dir = os.path.join(pathlib.PurePath(file.name).parent, "project", "0")
custom_gradio_runner = GradioStreamRunner.from_trial_folder(trial_dir)
history.append({"role": "assistant", "content": ""})
for output in custom_gradio_runner.stream_run(history[-2]["content"]):
stream_delta = output[0]
history[-1]["content"] = stream_delta
yield history
def user(user_message, history: list):
return "", history + [{"role": "user", "content": user_message}]
with gr.Blocks(theme="earneleh/paris") as demo:
gr.Markdown("# AutoRAG Trial & Debugging Interface")
with gr.Tabs() as tabs:
with gr.Tab("Environment Variables"):
gr.Markdown("## Environment Variables")
with gr.Row(): # Arrange horizontally
with gr.Column(scale=3):
api_name = gr.Textbox(
label="Environment Variable Name",
type="text",
placeholder="Enter your Environment Variable Name",
)
gr.Examples(examples=[["OPENAI_API_KEY"]], inputs=api_name)
with gr.Column(scale=7):
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Enter your API Key",
)
set_env_button = gr.Button("Set Environment Variable")
env_output = gr.Textbox(
label="Status", interactive=False
)
api_key.submit(
set_environment_variable, inputs=[api_name, api_key], outputs=env_output
)
set_env_button.click(
set_environment_variable, inputs=[api_name, api_key], outputs=env_output
)
with gr.Tab("File Upload"):
with gr.Row() as file_upload_row:
with gr.Column(scale=3):
yaml_file = gr.File(
label="Upload YAML File",
file_count="single",
)
make_yaml_button = gr.Button("Make Your Own YAML File",
link="https://tally.so/r/mBQY5N")
with gr.Column(scale=7):
yaml_content = gr.Textbox(label="YAML File Content")
gr.Markdown("Here is the Sample YAML File. Just click the file ❗")
gr.Markdown("### Non-GPU Examples")
gr.Examples(examples=non_gpu_examples, inputs=yaml_file)
with gr.Row():
# Section for GPU examples
with gr.Column():
gr.Markdown("### GPU Examples")
gr.Markdown(
"**⚠️ Warning**: Here are the YAML files containing the modules that use the **local model**.")
gr.Markdown(
"Note that if you Run_Trial in a non-GPU environment, **it can take a very long time**.")
gr.Examples(examples=gpu_examples, inputs=yaml_file)
make_gpu = gr.Button("Use AutoRAG GPU Feature",
link="https://tally.so/r/3j7rP6")
# Section for GPU + API examples
with gr.Column():
gr.Markdown("### GPU + API Examples")
gr.Markdown(
"**⚠️ Warning**: Here are the YAML files containing the modules that use the **local model** and **API Based Model**.")
gr.Markdown("You need to set **JINA_API_KEY**, **COHERE_API_KEY**, **MXBAI_API_KEY** and **VOYAGE_API_KEY** as environment variables to use this feature. ")
gr.Examples(examples=gpu_api_examples, inputs=yaml_file)
gpu_api_button = gr.Button("Use AutoRAG API KEY Feature",
link="https://tally.so/r/waD1Ab")
with gr.Row() as qa_upload_row:
with gr.Column(scale=3):
qa_file = gr.File(
label="Upload qa.parquet File",
file_count="single",
)
# Add button for QA
make_qa_button = gr.Button("Make Your Own QA Data",
link="https://huggingface.co/spaces/AutoRAG/AutoRAG-data-creation")
with gr.Column(scale=7):
qa_content = gr.Dataframe(label="QA Parquet File Content")
gr.Markdown("Here is the Sample QA File. Just click the file ❗")
gr.Examples(examples=[[example_qa_parquet]], inputs=qa_file)
with gr.Row() as corpus_upload_row:
with gr.Column(scale=3):
corpus_file = gr.File(
label="Upload corpus.parquet File",
file_count="single",
)
make_corpus_button = gr.Button("Make Your Own Corpus Data",
link="https://huggingface.co/spaces/AutoRAG/AutoRAG-data-creation")
with gr.Column(scale=7):
corpus_content = gr.Dataframe(label="Corpus Parquet File Content")
gr.Markdown(
"Here is the Sample Corpus File. Just click the file ❗"
)
gr.Examples(examples=[[example_corpus_parquet]], inputs=corpus_file)
run_trial_button = gr.Button("Run Trial", visible=False)
trial_output = gr.Textbox(label="Trial Output", visible=False)
yaml_file.change(display_yaml, inputs=yaml_file, outputs=yaml_content)
qa_file.change(display_parquet, inputs=qa_file, outputs=qa_content)
corpus_file.change(
display_parquet, inputs=corpus_file, outputs=corpus_content
)
yaml_file.change(
check_files,
inputs=[yaml_file, qa_file, corpus_file],
outputs=run_trial_button,
)
qa_file.change(
check_files,
inputs=[yaml_file, qa_file, corpus_file],
outputs=run_trial_button,
)
corpus_file.change(
check_files,
inputs=[yaml_file, qa_file, corpus_file],
outputs=run_trial_button,
)
run_trial_button.click(
lambda: (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
),
outputs=[
file_upload_row,
qa_upload_row,
corpus_upload_row,
trial_output,
],
)
run_trial_button.click(
run_trial,
inputs=[yaml_file, yaml_file, qa_file, corpus_file],
outputs=trial_output,
)
# New Chat Tab
with gr.Tab("Chat") as chat_tab:
gr.Markdown("### Compare Chat Models")
question_input = gr.Textbox(
label="Your Question", placeholder="Type your question here..."
)
pseudo_input = gr.Textbox(label="havertz", visible=False)
with gr.Row():
# Left Chatbox (Default YAML)
with gr.Column():
gr.Markdown("#### Naive RAG Chat")
default_chatbox = gr.Chatbot(label="Naive RAG Conversation",type="messages")
# Right Chatbox (Custom YAML)
with gr.Column():
gr.Markdown("#### Optimized RAG Chat")
custom_chatbox = gr.Chatbot(label="Optimized RAG Conversation",type="messages")
question_input.submit(lambda x: x, inputs=[question_input], outputs=[pseudo_input]).then(
user, [question_input, default_chatbox], outputs=[question_input, default_chatbox], queue=False
).then(
stream_default,
inputs=[yaml_file, default_chatbox],
outputs=[default_chatbox],
)
pseudo_input.change(
user, [pseudo_input, custom_chatbox], outputs=[question_input, custom_chatbox], queue=False).then(
stream_optimized,
inputs=[yaml_file, custom_chatbox],
outputs=[custom_chatbox],
)
deploy_button = gr.Button("Deploy",
link="https://tally.so/r/3XM7y4")
if __name__ == "__main__":
# Run the interface
demo.launch(share=False, debug=True)