Spaces:
Runtime error
Runtime error
# Ref: https://github.com/liruoteng/OpticalFlowToolkit/blob/5cf87b947a0032f58c922bbc22c0afb30b90c418/lib/flowlib.py#L249 | |
import numpy as np | |
UNKNOWN_FLOW_THRESH = 1e7 | |
def make_color_wheel(): | |
""" | |
Generate color wheel according Middlebury color code | |
:return: Color wheel | |
""" | |
RY = 15 | |
YG = 6 | |
GC = 4 | |
CB = 11 | |
BM = 13 | |
MR = 6 | |
ncols = RY + YG + GC + CB + BM + MR | |
colorwheel = np.zeros([ncols, 3]) | |
col = 0 | |
# RY | |
colorwheel[0:RY, 0] = 255 | |
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY)) | |
col += RY | |
# YG | |
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG)) | |
colorwheel[col:col+YG, 1] = 255 | |
col += YG | |
# GC | |
colorwheel[col:col+GC, 1] = 255 | |
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC)) | |
col += GC | |
# CB | |
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB)) | |
colorwheel[col:col+CB, 2] = 255 | |
col += CB | |
# BM | |
colorwheel[col:col+BM, 2] = 255 | |
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM)) | |
col += + BM | |
# MR | |
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) | |
colorwheel[col:col+MR, 0] = 255 | |
return colorwheel | |
colorwheel = make_color_wheel() | |
def compute_color(u, v): | |
""" | |
compute optical flow color map | |
:param u: optical flow horizontal map | |
:param v: optical flow vertical map | |
:return: optical flow in color code | |
""" | |
[h, w] = u.shape | |
img = np.zeros([h, w, 3]) | |
nanIdx = np.isnan(u) | np.isnan(v) | |
u[nanIdx] = 0 | |
v[nanIdx] = 0 | |
ncols = np.size(colorwheel, 0) | |
rad = np.sqrt(u**2+v**2) | |
a = np.arctan2(-v, -u) / np.pi | |
fk = (a+1) / 2 * (ncols - 1) + 1 | |
k0 = np.floor(fk).astype(int) | |
k1 = k0 + 1 | |
k1[k1 == ncols+1] = 1 | |
f = fk - k0 | |
for i in range(0, np.size(colorwheel,1)): | |
tmp = colorwheel[:, i] | |
col0 = tmp[k0-1] / 255 | |
col1 = tmp[k1-1] / 255 | |
col = (1-f) * col0 + f * col1 | |
idx = rad <= 1 | |
col[idx] = 1-rad[idx]*(1-col[idx]) | |
notidx = np.logical_not(idx) | |
col[notidx] *= 0.75 | |
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx))) | |
return img | |
def flow_to_image(flow): | |
""" | |
Convert flow into middlebury color code image | |
:param flow: optical flow map | |
:return: optical flow image in middlebury color | |
""" | |
u = flow[:, :, 0] | |
v = flow[:, :, 1] | |
maxu = -999. | |
maxv = -999. | |
minu = 999. | |
minv = 999. | |
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) | |
u[idxUnknow] = 0 | |
v[idxUnknow] = 0 | |
maxu = max(maxu, np.max(u)) | |
minu = min(minu, np.min(u)) | |
maxv = max(maxv, np.max(v)) | |
minv = min(minv, np.min(v)) | |
rad = np.sqrt(u ** 2 + v ** 2) | |
maxrad = max(-1, np.max(rad)) | |
u = u/(maxrad + np.finfo(float).eps) | |
v = v/(maxrad + np.finfo(float).eps) | |
img = compute_color(u, v) | |
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) | |
img[idx] = 0 | |
return np.uint8(img) |