Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException, Header | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
import openai | |
from typing import List, Optional, Union | |
import logging | |
import httpx | |
import uuid | |
import time | |
import json | |
from datetime import datetime, timezone | |
import requests | |
import uvicorn | |
import random | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
MAX_RETRIES = 3 | |
class ChatRequest(BaseModel): | |
messages: List[dict] | |
model: str | |
temperature: Optional[float] = 0.7 | |
stream: Optional[bool] = False | |
tools: Optional[List[dict]] = [] | |
tool_choice: Optional[str] = "auto" | |
class EmbeddingRequest(BaseModel): | |
input: Union[str, List[str]] | |
model: str | |
encoding_format: Optional[str] = "float" | |
async def verify_authorization(authorization: str = Header(None)): | |
print("Authorization header:", authorization) | |
if not authorization: | |
logger.error("Missing Authorization header") | |
raise HTTPException(status_code=401, detail="Missing Authorization header") | |
if not authorization.startswith("Bearer "): | |
logger.error("Invalid Authorization header format") | |
raise HTTPException( | |
status_code=401, detail="Invalid Authorization header format" | |
) | |
token = authorization.replace("Bearer ", "") | |
return token | |
def get_openai_models(api_keys): | |
api_key = random.choice(api_keys) | |
try: | |
client = openai.OpenAI(api_key=api_key) | |
models = client.models.list() | |
return models.model_dump() | |
except Exception as e: | |
logger.error(f"Error getting models from OpenAI with key {api_key}: {e}") | |
return {"error": str(e)} | |
def get_gemini_models(api_keys): | |
api_key = random.choice(api_keys) | |
base_url = "https://generativelanguage.googleapis.com/v1beta" | |
url = f"{base_url}/models?key={api_key}" | |
try: | |
response = requests.get(url) | |
if response.status_code == 200: | |
gemini_models = response.json() | |
return convert_to_openai_models_format(gemini_models) | |
else: | |
logger.error(f"Error getting models from Gemini with key {api_key}: {response.status_code} - {response.text}") | |
return {"error": f"Gemini API error: {response.status_code} - {response.text}"} | |
except requests.RequestException as e: | |
logger.error(f"Request failed: {e}") | |
return {"error": f"Request failed: {e}"} | |
def convert_to_openai_models_format(gemini_models): | |
openai_format = {"object": "list", "data": []} | |
for model in gemini_models.get("models", []): | |
openai_model = { | |
"id": model["name"].split("/")[-1], | |
"object": "model", | |
"created": int(datetime.now(timezone.utc).timestamp()), | |
"owned_by": "google", | |
"permission": [], | |
"root": model["name"], | |
"parent": None, | |
} | |
openai_format["data"].append(openai_model) | |
return openai_format | |
def convert_messages_to_gemini_format(messages): | |
gemini_messages = [] | |
for msg in messages: | |
role = "user" if msg["role"] == "user" else "model" | |
parts = [] | |
if isinstance(msg["content"], str): | |
parts.append({"text": msg["content"]}) | |
elif isinstance(msg["content"], list): | |
for content in msg["content"]: | |
if isinstance(content, str): | |
parts.append({"text": content}) | |
elif isinstance(content, dict) and content["type"] == "text": | |
parts.append({"text": content["text"]}) | |
elif isinstance(content, dict) and content["type"] == "image_url": | |
image_url = content["image_url"]["url"] | |
if image_url.startswith("data:image"): | |
parts.append( | |
{ | |
"inline_data": { | |
"mime_type": "image/jpeg", | |
"data": image_url.split(",")[1], | |
} | |
} | |
) | |
else: | |
parts.append( | |
{ | |
"image_url": { | |
"url": image_url, | |
} | |
} | |
) | |
gemini_messages.append({"role": role, "parts": parts}) | |
return gemini_messages | |
async def convert_gemini_response_to_openai(response, model, stream=False): | |
if stream: | |
chunk = response | |
if not chunk["candidates"]: | |
return None | |
return { | |
"id": "chatcmpl-" + str(uuid.uuid4()), | |
"object": "chat.completion.chunk", | |
"created": int(time.time()), | |
"model": model, | |
"choices": [ | |
{ | |
"index": 0, | |
"delta": { | |
"content": chunk["candidates"][0]["content"]["parts"][0]["text"] | |
}, | |
"finish_reason": None, | |
} | |
], | |
} | |
else: | |
content = response["candidates"][0]["content"]["parts"][0]["text"] | |
return { | |
"id": "chatcmpl-" + str(uuid.uuid4()), | |
"object": "chat.completion", | |
"created": int(time.time()), | |
"model": model, | |
"choices": [ | |
{ | |
"index": 0, | |
"message": { | |
"role": "assistant", | |
"content": content, | |
}, | |
"finish_reason": "stop", | |
} | |
], | |
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, | |
} | |
async def list_models(authorization: str = Header(None)): | |
token = await verify_authorization(authorization) | |
api_keys = [key.strip() for key in token.split(',')] | |
all_models = [] | |
error_messages = [] | |
for api_key in api_keys: | |
if api_key.startswith("sk-"): | |
response = get_openai_models([api_key]) | |
else: | |
response = get_gemini_models([api_key]) | |
if "error" in response: | |
error_messages.append(response["error"]) | |
else: | |
if isinstance(response, dict) and 'data' in response: | |
all_models.extend(response['data']) | |
else: | |
logger.warning(f"Unexpected response format from model list API for key {api_key}: {response}") | |
if error_messages and not all_models: | |
raise HTTPException(status_code=500, detail=f"Errors encountered: {', '.join(error_messages)}") | |
return {"data": all_models, "object": "list"} | |
async def chat_completion(request: ChatRequest, authorization: str = Header(None)): | |
token = await verify_authorization(authorization) | |
api_keys = [key.strip() for key in token.split(',')] | |
logger.info(f"Chat completion request - Model: {request.model}") | |
retries = 0 | |
while retries < MAX_RETRIES: | |
api_key = random.choice(api_keys) | |
try: | |
logger.info(f"Attempt {retries + 1} with API key: {api_key}") | |
if api_key.startswith("sk-"): | |
client = openai.OpenAI(api_key=api_key) | |
if request.stream: | |
logger.info("Streaming response enabled") | |
async def generate(): | |
try: | |
stream_response = client.chat.completions.create( | |
model=request.model, | |
messages=request.messages, | |
temperature=request.temperature, | |
stream=True, | |
) | |
for chunk in stream_response: | |
chunk_json = chunk.model_dump_json() | |
yield f"data: {chunk_json}\n\n" | |
yield "data: [DONE]\n\n" | |
except Exception as e: | |
logger.error(f"Stream error: {str(e)}") | |
raise | |
return StreamingResponse(content=generate(), media_type="text/event-stream") | |
else: | |
response = client.chat.completions.create( | |
model=request.model, | |
messages=request.messages, | |
temperature=request.temperature, | |
) | |
logger.info("Chat completion successful") | |
return response.model_dump() | |
else: | |
gemini_messages = convert_messages_to_gemini_format(request.messages) | |
payload = { | |
"contents": gemini_messages, | |
"generationConfig": { | |
"temperature": request.temperature, | |
} | |
} | |
if request.stream: | |
logger.info("Streaming response enabled") | |
async def generate(): | |
nonlocal api_key, retries, api_keys | |
while retries < MAX_RETRIES: | |
try: | |
async with httpx.AsyncClient() as client: | |
stream_url = f"https://generativelanguage.googleapis.com/v1beta/models/{request.model}:streamGenerateContent?alt=sse&key={api_key}" | |
async with client.stream("POST", stream_url, json=payload, timeout=60.0) as response: | |
if response.status_code == 429: | |
logger.warning(f"Rate limit reached for key: {api_key}") | |
retries += 1 | |
if retries >= MAX_RETRIES: | |
yield f"data: {json.dumps({'error': 'Max retries reached'})}\n\n" | |
break | |
api_keys.remove(api_key) | |
if not api_keys: | |
yield f"data: {json.dumps({'error': 'All API keys exhausted'})}\n\n" | |
break | |
api_key = random.choice(api_keys) | |
logger.info(f"Retrying with a new API key: {api_key}") | |
continue | |
if response.status_code != 200: | |
logger.error(f"Error in streaming response with key {api_key}: {response.status_code} - {response.text}") | |
retries += 1 | |
if retries >= MAX_RETRIES: | |
yield f"data: {json.dumps({'error': 'Max retries reached'})}\n\n" | |
break | |
api_keys.remove(api_key) | |
if not api_keys: | |
yield f"data: {json.dumps({'error': 'All API keys exhausted'})}\n\n" | |
break | |
api_key = random.choice(api_keys) | |
logger.info(f"Retrying with a new API key: {api_key}") | |
continue | |
async for line in response.aiter_lines(): | |
if line.startswith("data: "): | |
try: | |
chunk = json.loads(line[6:]) | |
if not chunk.get("candidates"): | |
continue | |
content = chunk["candidates"][0]["content"]["parts"][0]["text"] | |
new_chunk = { | |
"id": "chatcmpl-" + str(uuid.uuid4()), | |
"object": "chat.completion.chunk", | |
"created": int(time.time()), | |
"model": request.model, | |
"choices": [ | |
{ | |
"index": 0, | |
"delta": { | |
"content": content | |
}, | |
"finish_reason": None, | |
} | |
], | |
} | |
yield f"data: {json.dumps(new_chunk)}\n\n" | |
except json.JSONDecodeError: | |
continue | |
yield "data: [DONE]\n\n" | |
return | |
except Exception as e: | |
logger.error(f"Stream error: {str(e)}") | |
retries += 1 | |
if retries >= MAX_RETRIES: | |
yield f"data: {json.dumps({'error': 'Max retries reached'})}\n\n" | |
break | |
api_keys.remove(api_key) | |
if not api_keys: | |
yield f"data: {json.dumps({'error': 'All API keys exhausted'})}\n\n" | |
break | |
api_key = random.choice(api_keys) | |
logger.info(f"Retrying with a new API key: {api_key}") | |
continue | |
return StreamingResponse(content=generate(), media_type="text/event-stream") | |
else: | |
async with httpx.AsyncClient() as client: | |
non_stream_url = f"https://generativelanguage.googleapis.com/v1beta/models/{request.model}:generateContent?key={api_key}" | |
response = await client.post(non_stream_url, json=payload) | |
if response.status_code != 200: | |
logger.error(f"Error in non-streaming response with key {api_key}: {response.status_code} - {response.text}") | |
retries += 1 | |
if retries >= MAX_RETRIES: | |
raise HTTPException(status_code=500, detail="Max retries reached") | |
api_keys.remove(api_key) | |
if not api_keys: | |
raise HTTPException(status_code=500, detail="All API keys exhausted") | |
api_key = random.choice(api_keys) | |
logger.info(f"Retrying with a new API key: {api_key}") | |
continue | |
gemini_response = response.json() | |
logger.info("Chat completion successful") | |
return await convert_gemini_response_to_openai(gemini_response, request.model) | |
except Exception as e: | |
logger.error(f"Error in chat completion: {str(e)}") | |
if isinstance(e, HTTPException): | |
raise e | |
retries += 1 | |
if retries >= MAX_RETRIES: | |
logger.error("Max retries reached, giving up") | |
raise HTTPException(status_code=500, detail="Max retries reached") | |
api_keys.remove(api_key) | |
if not api_keys: | |
raise HTTPException(status_code=500, detail="All API keys exhausted") | |
api_key = random.choice(api_keys) | |
logger.info(f"Retrying with a new API key: {api_key}") | |
continue | |
raise HTTPException(status_code=500, detail="Unexpected error in chat completion") | |
async def health_check(): | |
logger.info("Health check endpoint called") | |
return {"status": "healthy"} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8080) |