Spaces:
Runtime error
Runtime error
from pytube import YouTube | |
from pydub import AudioSegment | |
import whisper | |
import webrtcvad | |
import gradio as gr | |
import os | |
def download_audio(youtube_url, download_path='downloads', audio_filename='audio.mp3'): | |
yt = YouTube(youtube_url) | |
audio_stream = yt.streams.filter(only_audio=True).first() | |
if not os.path.exists(download_path): | |
os.makedirs(download_path) | |
out_file = audio_stream.download(output_path=download_path, filename=audio_filename) | |
return out_file | |
def convert_to_wav(mp3_path, wav_path='downloads/audio.wav'): | |
audio = AudioSegment.from_file(mp3_path) | |
audio.export(wav_path, format='wav') | |
return wav_path | |
def transcribe_audio(audio_path): | |
model = whisper.load_model("base") | |
result = model.transcribe(audio_path) | |
return result["segments"] | |
def vad_audio(audio_path, aggressiveness=3): | |
audio = AudioSegment.from_wav(audio_path) | |
audio = audio.set_frame_rate(16000).set_channels(1) | |
vad = webrtcvad.Vad(aggressiveness) | |
def frame_generator(audio_segment, frame_duration_ms=10): | |
n = int(audio_segment.frame_rate * (frame_duration_ms / 1000.0) * 2) # Calculate frame size | |
offset = 0 | |
while offset + n < len(audio_segment.raw_data): | |
yield audio_segment.raw_data[offset:offset + n] | |
offset += n | |
frames = frame_generator(audio) | |
segments = [] | |
chunk_start = None | |
timestamp = 0.0 | |
for frame in frames: | |
is_speech = vad.is_speech(frame, sample_rate=16000) | |
if is_speech: | |
if chunk_start is None: | |
chunk_start = timestamp | |
else: | |
if chunk_start is not None: | |
segments.append((chunk_start, timestamp)) | |
chunk_start = None | |
timestamp += 0.01 | |
if chunk_start is not None: | |
segments.append((chunk_start, timestamp)) | |
return segments | |
def semantic_chunking(transcription_segments, vad_segments, max_duration=15.0): | |
chunks = [] | |
chunk_id = 0 | |
for i, (start, end) in enumerate(vad_segments): | |
segment_texts = [seg['text'] for seg in transcription_segments if seg['start'] >= start and seg['end'] <= end] | |
segment_text = ' '.join(segment_texts) | |
duration = end - start | |
if duration <= max_duration: | |
chunks.append({ | |
"chunk_id": chunk_id, | |
"chunk_length": duration, | |
"text": segment_text, | |
"start_time": start, | |
"end_time": end, | |
}) | |
chunk_id += 1 | |
return chunks | |
def process_video(youtube_url): | |
mp3_path = download_audio(youtube_url) | |
audio_path = convert_to_wav(mp3_path) | |
transcription_segments = transcribe_audio(audio_path) | |
vad_segments = vad_audio(audio_path) | |
chunks = semantic_chunking(transcription_segments, vad_segments) | |
return chunks | |
iface = gr.Interface(fn=process_video, inputs="text", outputs="json", title="Semantic Chunking of YouTube Video", description="Enter a YouTube URL to get semantic chunks of the video.") | |
iface.launch() | |