from pytube import YouTube from pydub import AudioSegment import whisper import webrtcvad import gradio as gr import os def download_audio(youtube_url, download_path='downloads', audio_filename='audio.mp3'): yt = YouTube(youtube_url) audio_stream = yt.streams.filter(only_audio=True).first() if not os.path.exists(download_path): os.makedirs(download_path) out_file = audio_stream.download(output_path=download_path, filename=audio_filename) return out_file def convert_to_wav(mp3_path, wav_path='downloads/audio.wav'): audio = AudioSegment.from_file(mp3_path) audio.export(wav_path, format='wav') return wav_path def transcribe_audio(audio_path): model = whisper.load_model("base") result = model.transcribe(audio_path) return result["segments"] def vad_audio(audio_path, aggressiveness=3): audio = AudioSegment.from_wav(audio_path) audio = audio.set_frame_rate(16000).set_channels(1) vad = webrtcvad.Vad(aggressiveness) def frame_generator(audio_segment, frame_duration_ms=10): n = int(audio_segment.frame_rate * (frame_duration_ms / 1000.0) * 2) # Calculate frame size offset = 0 while offset + n < len(audio_segment.raw_data): yield audio_segment.raw_data[offset:offset + n] offset += n frames = frame_generator(audio) segments = [] chunk_start = None timestamp = 0.0 for frame in frames: is_speech = vad.is_speech(frame, sample_rate=16000) if is_speech: if chunk_start is None: chunk_start = timestamp else: if chunk_start is not None: segments.append((chunk_start, timestamp)) chunk_start = None timestamp += 0.01 if chunk_start is not None: segments.append((chunk_start, timestamp)) return segments def semantic_chunking(transcription_segments, vad_segments, max_duration=15.0): chunks = [] chunk_id = 0 for i, (start, end) in enumerate(vad_segments): segment_texts = [seg['text'] for seg in transcription_segments if seg['start'] >= start and seg['end'] <= end] segment_text = ' '.join(segment_texts) duration = end - start if duration <= max_duration: chunks.append({ "chunk_id": chunk_id, "chunk_length": duration, "text": segment_text, "start_time": start, "end_time": end, }) chunk_id += 1 return chunks def process_video(youtube_url): mp3_path = download_audio(youtube_url) audio_path = convert_to_wav(mp3_path) transcription_segments = transcribe_audio(audio_path) vad_segments = vad_audio(audio_path) chunks = semantic_chunking(transcription_segments, vad_segments) return chunks iface = gr.Interface(fn=process_video, inputs="text", outputs="json", title="Semantic Chunking of YouTube Video", description="Enter a YouTube URL to get semantic chunks of the video.") iface.launch()