BeardedMonster commited on
Commit
6d5c8c7
·
verified ·
1 Parent(s): 210a3e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -6
app.py CHANGED
@@ -78,9 +78,29 @@ st.write("**It might take a while to return an output on the first 'generate' cl
78
  st.write("**For convenience, you can use chatgpt to copy text and evaluate model output.**")
79
  st.write("-" * 50)
80
 
81
- async def generate_from_api(user_input, generation_config):
82
- url = "https://pauljeffrey--sabiyarn-fastapi-app.modal.run/predict"
 
 
 
 
 
83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  payload = {
85
  "prompt": user_input,
86
  "config": generation_config
@@ -89,10 +109,19 @@ async def generate_from_api(user_input, generation_config):
89
  headers = {
90
  'Content-Type': 'application/json'
91
  }
92
-
93
  async with aiohttp.ClientSession() as session:
94
- async with session.post(url, headers=headers, json=payload) as response:
95
- return await response.text()
 
 
 
 
 
 
 
 
 
96
 
97
 
98
  # Sample texts
@@ -171,7 +200,7 @@ def wrap_text(text, task_value):
171
  # Text input
172
  user_input = st.text_area("Enter text below **(PLEASE, FIRST READ THE INSTRUCTIONS ON HOW TO USE IN THE SIDE BAR FOR BETTER EXPERIENCE)**: ", sample_texts[sample_text])
173
  user_input = instruction_wrap.get(sample_texts.get(user_input, user_input), user_input)
174
-
175
  if st.button("Generate"):
176
  if user_input:
177
  try:
@@ -191,6 +220,11 @@ if st.button("Generate"):
191
  input_ids = tokenizer(wrapped_input, return_tensors="pt")["input_ids"].to(device)
192
  output = model.generate(input_ids, **generation_config)
193
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
 
 
 
 
 
194
 
195
  generated_text = re.sub(r"\|(end_f_text|end_of_text|end_ofext|end_oftext)", " ", generated_text.split("|end_of_text|")[0])
196
  full_output = st.empty()
 
78
  st.write("**For convenience, you can use chatgpt to copy text and evaluate model output.**")
79
  st.write("-" * 50)
80
 
81
+ # async def generate_from_api(user_input, generation_config):
82
+ # url = "https://pauljeffrey--sabiyarn-fastapi-app.modal.run/predict"
83
+
84
+ # payload = {
85
+ # "prompt": user_input,
86
+ # "config": generation_config
87
+ # }
88
 
89
+ # headers = {
90
+ # 'Content-Type': 'application/json'
91
+ # }
92
+
93
+ # async with aiohttp.ClientSession() as session:
94
+ # async with session.post(url, headers=headers, json=payload) as response:
95
+ # return await response.text()
96
+
97
+ async def generate_from_api(user_input, generation_config):
98
+ urls = [
99
+ "https://pauljeffrey--sabiyarn-fastapi-app.modal.run/predict",
100
+ "https://daveokpare--sabiyarn-fastapi-app.modal.run/predict",
101
+ # "https://pauljeffrey_-sabiyarn-fastapi-app.modal.run/predict"
102
+ ]
103
+
104
  payload = {
105
  "prompt": user_input,
106
  "config": generation_config
 
109
  headers = {
110
  'Content-Type': 'application/json'
111
  }
112
+
113
  async with aiohttp.ClientSession() as session:
114
+ for url in urls:
115
+ try:
116
+ async with session.post(url, headers=headers, json=payload) as response:
117
+ if response.status == 200:
118
+ return await response.text()
119
+ else:
120
+ print(f"Failed to fetch from {url} with status code {response.status}")
121
+ except Exception as e:
122
+ print(f"Error fetching from {url}: {e}")
123
+
124
+ return "FAILED"
125
 
126
 
127
  # Sample texts
 
200
  # Text input
201
  user_input = st.text_area("Enter text below **(PLEASE, FIRST READ THE INSTRUCTIONS ON HOW TO USE IN THE SIDE BAR FOR BETTER EXPERIENCE)**: ", sample_texts[sample_text])
202
  user_input = instruction_wrap.get(sample_texts.get(user_input, user_input), user_input)
203
+ print("Final user input: ", user_input)
204
  if st.button("Generate"):
205
  if user_input:
206
  try:
 
220
  input_ids = tokenizer(wrapped_input, return_tensors="pt")["input_ids"].to(device)
221
  output = model.generate(input_ids, **generation_config)
222
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
223
+
224
+ if generated_text == "FAILED":
225
+ input_ids = tokenizer(wrapped_input, return_tensors="pt")["input_ids"].to(device)
226
+ output = model.generate(input_ids, **generation_config)
227
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
228
 
229
  generated_text = re.sub(r"\|(end_f_text|end_of_text|end_ofext|end_oftext)", " ", generated_text.split("|end_of_text|")[0])
230
  full_output = st.empty()