|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel, PeftConfig |
|
|
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
tokenizer = AutoTokenizer.from_pretrained("BeastGokul/Bio-Mistral-7B-finetuned") |
|
base_model = AutoModelForCausalLM.from_pretrained("BioMistral/BioMistral-7B") |
|
base_model.resize_token_embeddings(len(tokenizer)) |
|
model = PeftModel.from_pretrained(base_model, "BeastGokul/Bio-Mistral-7B-finetuned") |
|
|
|
def generate_response(user_query): |
|
inputs = tokenizer(user_query, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=100) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
with gr.Blocks() as demo: |
|
user_input = gr.Textbox(placeholder="Enter your biomedical query...", label="Your Query") |
|
response = gr.Textbox(label="Response", interactive=False) |
|
|
|
user_input.submit(fn=generate_response, inputs=user_input, outputs=response) |
|
|
|
demo.launch() |
|
|