BeastGokul commited on
Commit
0fb3df9
·
verified ·
1 Parent(s): efbce42

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -24
app.py CHANGED
@@ -10,41 +10,49 @@ base_model = AutoModelForCausalLM.from_pretrained("BeastGokul/Bio-Mistral-7B-fin
10
  base_model.resize_token_embeddings(len(tokenizer))
11
  model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
12
 
13
- def get_model_response(user_query):
 
 
 
 
 
 
 
14
  messages = [
15
  {
16
  "role": "user",
17
  "content": user_query
18
  }
19
- {
20
- "role": "biomedical assistant",
21
- "content": ""
22
- }
23
  ]
24
 
25
-
26
  response = client.chat_completions.create(
27
- model=model,
28
  messages=messages,
29
  max_tokens=500
30
  )
31
-
32
- # Extract and return the response content
33
- return response.choices[0].message['content']
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  with gr.Blocks() as demo:
36
- gr.Markdown("# Biomedical Query Chatbot")
37
- with gr.Row():
38
- user_input = gr.Textbox(
39
- placeholder="Enter your biomedical query...",
40
- label="Your Query",
41
- lines=1
42
- )
43
- submit_button = gr.Button("Submit")
44
-
45
- output = gr.Textbox(label="Response from Biomedical Assistant")
46
-
47
- submit_button.click(get_model_response, inputs=user_input, outputs=output)
48
-
49
- # Launch the app
50
  demo.launch()
 
10
  base_model.resize_token_embeddings(len(tokenizer))
11
  model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
12
 
13
+ import gradio as gr
14
+ from huggingface_hub import InferenceClient
15
+
16
+ # Set up Hugging Face client
17
+ client = InferenceClient(api_key="YOUR_HF_API_KEY")
18
+
19
+ def get_response(user_query):
20
+ # Define the request message with a biomedical role
21
  messages = [
22
  {
23
  "role": "user",
24
  "content": user_query
25
  }
 
 
 
 
26
  ]
27
 
28
+ # Make a call to the model
29
  response = client.chat_completions.create(
30
+ model="mistralai/Mistral-7B-Instruct-v0.3",
31
  messages=messages,
32
  max_tokens=500
33
  )
 
 
 
34
 
35
+ # Collect and return the output
36
+ reply = "".join(chunk.choices[0].delta.content for chunk in response)
37
+ return reply
38
+
39
+ # Define the UI with examples
40
+ example_queries = [
41
+ "What are the symptoms of anemia?",
42
+ "Explain the genetic basis of cystic fibrosis.",
43
+ "What are the latest treatments for Alzheimer's disease?",
44
+ "How does insulin affect blood sugar levels?",
45
+ "Can you summarize recent advances in cancer immunotherapy?"
46
+ ]
47
+
48
+ # Gradio Interface
49
  with gr.Blocks() as demo:
50
+ gr.Markdown("# Biomedical Assistant")
51
+ user_input = gr.Textbox(placeholder="Enter your biomedical query...", label="Your Query")
52
+ output_text = gr.Textbox(label="Response")
53
+ example = gr.Examples(examples=example_queries, inputs=user_input)
54
+
55
+ submit_btn = gr.Button("Get Response")
56
+ submit_btn.click(fn=get_response, inputs=user_input, outputs=output_text)
57
+
 
 
 
 
 
 
58
  demo.launch()