Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
from transformers import pipeline
|
4 |
-
|
5 |
"""
|
6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
"""
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
10 |
-
|
|
|
|
|
|
|
11 |
|
|
|
|
|
12 |
|
13 |
-
# Initialize the pipeline with your fine-tuned biomedical model
|
14 |
-
pipe = pipeline("text-generation", model="BeastGokul/Bio-Medical-MultiModal-Llama-3-8B-Finetuned")
|
15 |
|
16 |
def generate_response(chat_history, max_length, temperature, top_p):
|
17 |
conversation = "\n".join([f"User: {msg[0]}\nModel: {msg[1]}" for msg in chat_history if msg[1]])
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
+
# Load the model and tokenizer manually
|
10 |
+
model_name = "BeastGokul/Bio-Medical-MultiModal-Llama-3-8B-Finetuned"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
|
14 |
+
# Create a pipeline using the manually loaded model and tokenizer
|
15 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
16 |
|
|
|
|
|
17 |
|
18 |
def generate_response(chat_history, max_length, temperature, top_p):
|
19 |
conversation = "\n".join([f"User: {msg[0]}\nModel: {msg[1]}" for msg in chat_history if msg[1]])
|