Spaces:
Runtime error
Runtime error
File size: 3,690 Bytes
f936ab1 f8aee35 f936ab1 f8aee35 f936ab1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
torch.set_default_device("cuda")
# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained(
"mlabonne/phixtral-4x2_8",
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
"mlabonne/phixtral-4x2_8",
torch_dtype="auto",
load_in_8bit=True,
trust_remote_code=True
)
# Defining a custom stopping criteria class for the model's text generation.
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [50256, 50295] # IDs of tokens where the generation should stop.
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
return True
return False
# Function to generate model predictions.
def predict(message, history):
history_transformer_format = history + [[message, ""]]
stop = StopOnTokens()
# Formatting the input for the model.
system_prompt = "<|im_start|>system\nYou are Phixtral, a helpful AI assistant.<|im_end|>"
messages = system_prompt + "".join(["".join(["\n<|im_start|>user\n" + item[0], "<|im_end|>\n<|im_start|>assistant\n" + item[1]]) for item in history_transformer_format])
print(messages)
input_ids = tokenizer([messages], return_tensors="pt").to('cuda')
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.7,
num_beams=1,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start() # Starting the generation in a separate thread.
partial_message = ""
for new_token in streamer:
partial_message += new_token
if '<|im_end|>' in partial_message: # Breaking the loop if the stop token is generated.
break
yield partial_message
# Setting up the Gradio chat interface.
gr.ChatInterface(predict,
description="""
<center><img src="https://i.imgur.com/CJSeIGg.png" width="33%"></center>\n\n
Chat with [mlabonne/phixtral-2x2_8](https://huggingface.co/mlabonne/phixtral-2x2_8), the first Mixture of Experts made by merging two fine-tuned [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) models.
This small model (4.46B param) is good for various tasks, such as programming, dialogues, story writing, and more.\n\n
β€οΈ If you like this work, please follow me on [Hugging Face](https://huggingface.co/mlabonne) and [Twitter](https://twitter.com/maximelabonne).
""",
examples=[
'Can you solve the equation 2x + 3 = 11 for x?',
'Write an epic poem about Ancient Rome.',
'Who was the first person to walk on the Moon?',
'Use a list comprehension to create a list of squares for numbers from 1 to 10.',
'Recommend some popular science fiction books.',
'Can you write a short story about a time-traveling detective?'
],
theme=gr.themes.Soft(primary_hue="orange"),
).launch() |