import pandas as pd df = pd.read_csv('./combined_oceanography_questions.csv') context_data = [] for i in range(len(df)): context = "" for j in range(len(df.columns)): context += df.columns[j] context += ": " context += df.iloc[i][j] context += " " context_data.append(context) import os # Get the secret key from the environment groq_key = os.environ.get('bero') ## LLM used for RAG from langchain_groq import ChatGroq llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key) ## Embedding model! from langchain_huggingface import HuggingFaceEmbeddings embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # create vector store! from langchain_chroma import Chroma vectorstore = Chroma( collection_name="ocean_dataset_store", embedding_function=embed_model, ) # add data to vector nstore vectorstore.add_texts(context_data) retriever = vectorstore.as_retriever() from langchain_core.prompts import PromptTemplate template = ("""You are an ocean expert. Use the provided context to answer the question. If you don't know the answer, say so. Explain your answer in detail. Do not discuss the context in your response; just provide the answer directly. Context: {context} Question: {question} Answer:""") rag_prompt = PromptTemplate.from_template(template) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser() ) import gradio as gr import gradio as gr def sepia(input_img): sepia_filter = np.array([ [0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131] ]) sepia_img = input_img.dot(sepia_filter.T) sepia_img /= sepia_img.max() return sepia_img demo = gr.Interface(sepia, gr.Image(), "image") def rag_memory_stream(message, history): partial_text = "" for new_text in rag_chain.stream(message): partial_text += new_text yield partial_text css = """ html, body { margin: 0; padding: 0; height: 100%; overflow: hidden; } body::before { content: ''; position: fixed; top: 0; left: 0; width: 100vw; height: 100vh; background-image: url('https://thumbs.dreamstime.com/z/sea-water-ocean-wave-surfing-surface-colorful-vibrant-sunset-barrel-shape-124362369.jpg?ct=jpeg'); background-size: cover; background-repeat: no-repeat; opacity: 0.35; /* Faint background image */ background-position: center; z-index: -1; /* Keep the background behind text */ } .gradio-container { display: flex; justify-content: center; align-items: center; height: 100vh; /* Ensure the content is vertically centered */ }""" examples = [ "How many oceans exist?", "What is ocean temperature?", "What is the thermocline?", "What species of fish are found in Lake Kivu?", "How do local communities catch fish in Lake Nokoué?" ] description = "Ocean sciences Assistance" title = "I can answer any questions related to Ocean: Try me!" demo = gr.ChatInterface(fn=rag_memory_stream, type="messages", title=title, description=description, fill_height=True, css = css, examples=examples, theme="glass", ) if __name__ == "__main__": demo.launch()