File size: 12,058 Bytes
1d873c6
 
d4ce262
 
1d873c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ce262
1d873c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ce262
 
1d873c6
 
 
 
 
 
d4ce262
1d873c6
 
 
 
d4ce262
1d873c6
 
 
 
d4ce262
1d873c6
d4ce262
 
1d873c6
 
 
 
d4ce262
1d873c6
 
d4ce262
1d873c6
 
 
 
 
 
d4ce262
1d873c6
 
 
 
 
 
 
 
 
 
 
d4ce262
1d873c6
 
 
 
 
d4ce262
 
1d873c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ce262
1d873c6
 
 
 
 
 
 
 
 
 
 
 
 
d4ce262
1d873c6
 
 
 
 
 
d4ce262
1d873c6
 
 
 
 
 
 
 
d4ce262
1d873c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ce262
1d873c6
d4ce262
1d873c6
 
 
 
d4ce262
 
1d873c6
d4ce262
 
 
1d873c6
 
 
 
 
d4ce262
1d873c6
 
 
 
d4ce262
1d873c6
 
d4ce262
 
1d873c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ce262
1d873c6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import json
import io

from constants import *

global data_component, data_component_150, filter_component

def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths

def compute_scores(input_data):
    return [None, [
        input_data["Average_MTScore"],
        input_data["Average_CHScore"],
        input_data["Average_GPT4o-MTScore"],
        input_data["Average_UMT-FVD"],
        input_data["Average_UMTScore"]
    ]]

def add_new_eval(
    input_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    backbone_type_dropdown: str,
    model_link: str,
):
    if input_file is None:
        return "Error! Empty file!"
    else:
        input_json = json.load(io.BytesIO(input_file))
        
        if model_name_textbox not in input_json:
            return f"Error! Model '{model_name_textbox}' not found in input file!"
        
        selected_model_data = input_json[model_name_textbox]

        scores = compute_scores(selected_model_data)
        input_data = scores[1]
        input_data = [float(i) for i in input_data]

        csv_data = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH)

        if revision_name_textbox == '':
            col = csv_data.shape[0]
            model_name = model_name_textbox
            name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in csv_data['Model']]
            assert model_name not in name_list
        else:
            model_name = revision_name_textbox
            model_name_list = csv_data['Model']
            name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in model_name_list]
            if revision_name_textbox not in name_list:
                col = csv_data.shape[0]
            else:
                col = name_list.index(revision_name_textbox)

        if model_link == '':
            model_name = model_name  # no url
        else:
            model_name = '[' + model_name + '](' + model_link + ')'

        backbone = backbone_type_dropdown

        new_data = [
            model_name,
            backbone,
            input_data[3],
            input_data[4],
            input_data[0],
            input_data[1],
            input_data[2],
        ]
        csv_data.loc[col] = new_data 
        csv_data.to_csv(CSV_DIR_CHRONOMAGIC_BENCH, index=False)
    return "Evaluation successfully submitted!"

def add_new_eval_150(
    input_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    backbone_type_dropdown: str,
    model_link: str,
):
    if input_file is None:
        return "Error! Empty file!"
    else:
        input_json = json.load(io.BytesIO(input_file))
        
        if model_name_textbox not in input_json:
            return f"Error! Model '{model_name_textbox}' not found in input file!"
        
        selected_model_data = input_json[model_name_textbox]

        scores = compute_scores(selected_model_data)
        input_data = scores[1]
        input_data = [float(i) for i in input_data]

        csv_data = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH_150)

        if revision_name_textbox == '':
            col = csv_data.shape[0]
            model_name = model_name_textbox
            name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in csv_data['Model']]
            assert model_name not in name_list
        else:
            model_name = revision_name_textbox
            model_name_list = csv_data['Model']
            name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in model_name_list]
            if revision_name_textbox not in name_list:
                col = csv_data.shape[0]
            else:
                col = name_list.index(revision_name_textbox)

        if model_link == '':
            model_name = model_name  # no url
        else:
            model_name = '[' + model_name + '](' + model_link + ')'

        backbone = backbone_type_dropdown

        new_data = [
            model_name,
            backbone,
            input_data[3],
            input_data[4],
            input_data[0],
            input_data[1],
            input_data[2],
        ]
        csv_data.loc[col] = new_data 
        csv_data.to_csv(CSV_DIR_CHRONOMAGIC_BENCH_150, index=False)
    return "Evaluation (150) successfully submitted!"

def get_baseline_df():
    df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH)
    df = df.sort_values(by="MTScore↑", ascending=False)
    present_columns = MODEL_INFO + checkbox_group.value
    df = df[present_columns]
    return df

def get_baseline_df_150():
    df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH_150)
    df = df.sort_values(by="MTScore↑", ascending=False)
    present_columns = MODEL_INFO + checkbox_group_150.value
    df = df[present_columns]
    return df

def get_all_df():
    df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH)
    df = df.sort_values(by="MTScore↑", ascending=False)
    return df

def get_all_df_150():
    df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH_150)
    df = df.sort_values(by="MTScore↑", ascending=False)
    return df

block = gr.Blocks()


with block:
    gr.Markdown(
        LEADERBORAD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # table 1
        with gr.TabItem("🏅 ChronoMagic-Bench", elem_id="ChronoMagic-Bench-tab-table", id=0):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                        show_copy_button=True
                    )
    
            gr.Markdown(
                TABLE_INTRODUCTION
            )

            checkbox_group = gr.CheckboxGroup(
                choices=ALL_RESULTS,
                value=SELECTED_RESULTS,
                label="Select options",
                interactive=True,
            )

            data_component = gr.components.Dataframe(
                value=get_baseline_df, 
                headers=COLUMN_NAMES,
                type="pandas", 
                datatype=DATA_TITILE_TYPE,
                interactive=False,
                visible=True,
                )
    
            def on_checkbox_group_change(selected_columns):
                selected_columns = [item for item in ALL_RESULTS if item in selected_columns]
                present_columns = MODEL_INFO + selected_columns
                updated_data = get_all_df()[present_columns]
                updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
                updated_headers = present_columns
                update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]

                filter_component = gr.components.Dataframe(
                    value=updated_data, 
                    headers=updated_headers,
                    type="pandas", 
                    datatype=update_datatype,
                    interactive=False,
                    visible=True,
                    )
        
                return filter_component

            checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component)

        # table 2
        with gr.TabItem("🏅 ChronoMagic-Bench-150", elem_id="ChronoMagic-Bench-150-tab-table", id=1):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                        show_copy_button=True
                    )
    
            gr.Markdown(
                TABLE_INTRODUCTION
            )

            checkbox_group_150 = gr.CheckboxGroup(
                choices=ALL_RESULTS,
                value=SELECTED_RESULTS_150,
                label="Select options",
                interactive=True,
            )

            data_component_150 = gr.components.Dataframe(
                value=get_baseline_df_150, 
                headers=COLUMN_NAMES,
                type="pandas", 
                datatype=DATA_TITILE_TYPE,
                interactive=False,
                visible=True,
                )
    
            def on_checkbox_group_150_change(selected_columns):
                selected_columns = [item for item in ALL_RESULTS if item in selected_columns]
                present_columns = MODEL_INFO + selected_columns
                updated_data = get_all_df_150()[present_columns]
                updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
                updated_headers = present_columns
                update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]

                filter_component = gr.components.Dataframe(
                    value=updated_data, 
                    headers=updated_headers,
                    type="pandas", 
                    datatype=update_datatype,
                    interactive=False,
                    visible=True,
                    )
        
                return filter_component

            checkbox_group_150.change(fn=on_checkbox_group_150_change, inputs=checkbox_group_150, outputs=data_component_150)

        # table 3 
        with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=2):
            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name", placeholder="MagicTime"
                        )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name", placeholder="MagicTime"
                    )
                    backbone_type_dropdown = gr.Dropdown(
                        label="Backbone Type",
                        choices=["DiT", "U-Net"],
                        value="DiT"
                    )
                    model_link = gr.Textbox(
                        label="Model Link", placeholder="https://github.com/PKU-YuanGroup/MagicTime"
                    )

            with gr.Column():
                input_file = gr.File(label="Click to Upload a json File", type='binary')
                submit_button = gr.Button("Submit Eval (ChronoMagic-Bench)")
                submit_button_150 = gr.Button("Submit Eval (ChronoMagic-Bench-150)")

                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs=[
                        input_file,
                        model_name_textbox,
                        revision_name_textbox,
                        backbone_type_dropdown,
                        model_link,
                    ],
                    outputs=submission_result,
                )
                submit_button_150.click(
                    add_new_eval_150,
                    inputs=[
                        input_file,
                        model_name_textbox,
                        revision_name_textbox,
                        backbone_type_dropdown,
                        model_link,
                    ],
                    outputs = submission_result,
                )

    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(
            get_baseline_df, outputs=data_component
        )
        data_run.click(
            get_baseline_df_150, outputs=data_component_150
        )
        
block.launch()