Spaces:
Running
Running
File size: 12,058 Bytes
1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 d4ce262 1d873c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import json
import io
from constants import *
global data_component, data_component_150, filter_component
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def compute_scores(input_data):
return [None, [
input_data["Average_MTScore"],
input_data["Average_CHScore"],
input_data["Average_GPT4o-MTScore"],
input_data["Average_UMT-FVD"],
input_data["Average_UMTScore"]
]]
def add_new_eval(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
backbone_type_dropdown: str,
model_link: str,
):
if input_file is None:
return "Error! Empty file!"
else:
input_json = json.load(io.BytesIO(input_file))
if model_name_textbox not in input_json:
return f"Error! Model '{model_name_textbox}' not found in input file!"
selected_model_data = input_json[model_name_textbox]
scores = compute_scores(selected_model_data)
input_data = scores[1]
input_data = [float(i) for i in input_data]
csv_data = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in csv_data['Model']]
assert model_name not in name_list
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model']
name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
backbone = backbone_type_dropdown
new_data = [
model_name,
backbone,
input_data[3],
input_data[4],
input_data[0],
input_data[1],
input_data[2],
]
csv_data.loc[col] = new_data
csv_data.to_csv(CSV_DIR_CHRONOMAGIC_BENCH, index=False)
return "Evaluation successfully submitted!"
def add_new_eval_150(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
backbone_type_dropdown: str,
model_link: str,
):
if input_file is None:
return "Error! Empty file!"
else:
input_json = json.load(io.BytesIO(input_file))
if model_name_textbox not in input_json:
return f"Error! Model '{model_name_textbox}' not found in input file!"
selected_model_data = input_json[model_name_textbox]
scores = compute_scores(selected_model_data)
input_data = scores[1]
input_data = [float(i) for i in input_data]
csv_data = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH_150)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in csv_data['Model']]
assert model_name not in name_list
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model']
name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
backbone = backbone_type_dropdown
new_data = [
model_name,
backbone,
input_data[3],
input_data[4],
input_data[0],
input_data[1],
input_data[2],
]
csv_data.loc[col] = new_data
csv_data.to_csv(CSV_DIR_CHRONOMAGIC_BENCH_150, index=False)
return "Evaluation (150) successfully submitted!"
def get_baseline_df():
df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH)
df = df.sort_values(by="MTScore↑", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
df = df[present_columns]
return df
def get_baseline_df_150():
df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH_150)
df = df.sort_values(by="MTScore↑", ascending=False)
present_columns = MODEL_INFO + checkbox_group_150.value
df = df[present_columns]
return df
def get_all_df():
df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH)
df = df.sort_values(by="MTScore↑", ascending=False)
return df
def get_all_df_150():
df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH_150)
df = df.sort_values(by="MTScore↑", ascending=False)
return df
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# table 1
with gr.TabItem("🏅 ChronoMagic-Bench", elem_id="ChronoMagic-Bench-tab-table", id=0):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True
)
gr.Markdown(
TABLE_INTRODUCTION
)
checkbox_group = gr.CheckboxGroup(
choices=ALL_RESULTS,
value=SELECTED_RESULTS,
label="Select options",
interactive=True,
)
data_component = gr.components.Dataframe(
value=get_baseline_df,
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
)
def on_checkbox_group_change(selected_columns):
selected_columns = [item for item in ALL_RESULTS if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = get_all_df()[present_columns]
updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component
checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component)
# table 2
with gr.TabItem("🏅 ChronoMagic-Bench-150", elem_id="ChronoMagic-Bench-150-tab-table", id=1):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True
)
gr.Markdown(
TABLE_INTRODUCTION
)
checkbox_group_150 = gr.CheckboxGroup(
choices=ALL_RESULTS,
value=SELECTED_RESULTS_150,
label="Select options",
interactive=True,
)
data_component_150 = gr.components.Dataframe(
value=get_baseline_df_150,
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
)
def on_checkbox_group_150_change(selected_columns):
selected_columns = [item for item in ALL_RESULTS if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = get_all_df_150()[present_columns]
updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component
checkbox_group_150.change(fn=on_checkbox_group_150_change, inputs=checkbox_group_150, outputs=data_component_150)
# table 3
with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=2):
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name", placeholder="MagicTime"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name", placeholder="MagicTime"
)
backbone_type_dropdown = gr.Dropdown(
label="Backbone Type",
choices=["DiT", "U-Net"],
value="DiT"
)
model_link = gr.Textbox(
label="Model Link", placeholder="https://github.com/PKU-YuanGroup/MagicTime"
)
with gr.Column():
input_file = gr.File(label="Click to Upload a json File", type='binary')
submit_button = gr.Button("Submit Eval (ChronoMagic-Bench)")
submit_button_150 = gr.Button("Submit Eval (ChronoMagic-Bench-150)")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
input_file,
model_name_textbox,
revision_name_textbox,
backbone_type_dropdown,
model_link,
],
outputs=submission_result,
)
submit_button_150.click(
add_new_eval_150,
inputs=[
input_file,
model_name_textbox,
revision_name_textbox,
backbone_type_dropdown,
model_link,
],
outputs = submission_result,
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_baseline_df, outputs=data_component
)
data_run.click(
get_baseline_df_150, outputs=data_component_150
)
block.launch() |