Spaces:
Sleeping
Sleeping
File size: 1,261 Bytes
60af537 57419d8 d4cb7c6 57419d8 6c34a8c c5224aa 57419d8 6c34a8c 57419d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import numpy as np
import cv2
from PIL import Image
import torchvision.transforms as transforms
import gradio as gr
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
def process_image(image, yolo_versions=["yolov5"]):
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
return result_images
interface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil", label="Upload an Image"),
gr.CheckboxGroup(
choices=["yolov5", "yolov8s", "yolov10"],
value=["yolov5"], # Set default selection to YOLOv5
label="Select Model(s)",
)
],
outputs=gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500),
title="Explainable AI for YOLO Models",
description="Upload an image to visualize YOLO object detection with Grad-CAM."
)
if __name__ == "__main__":
interface.launch() |