Spaces:
Sleeping
Sleeping
import torch | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from pytorch_grad_cam import EigenCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image | |
import gradio as gr | |
# Global Color Palette | |
COLORS = np.random.uniform(0, 255, size=(80, 3)) | |
def parse_detections(results): | |
detections = results.pandas().xyxy[0].to_dict() | |
boxes, colors, names = [], [], [] | |
for i in range(len(detections["xmin"])): | |
confidence = detections["confidence"][i] | |
if confidence < 0.2: | |
continue | |
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i]) | |
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i]) | |
name, category = detections["name"][i], int(detections["class"][i]) | |
boxes.append((xmin, ymin, xmax, ymax)) | |
colors.append(COLORS[category]) | |
names.append(name) | |
return boxes, colors, names | |
def draw_detections(boxes, colors, names, img): | |
for box, color, name in zip(boxes, colors, names): | |
xmin, ymin, xmax, ymax = box | |
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) | |
cv2.putText(img, name, (xmin, ymin - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, | |
lineType=cv2.LINE_AA) | |
return img | |
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes): | |
cam = EigenCAM(model, target_layers) | |
grayscale_cam = cam(tensor)[0, :, :] | |
img_float = np.float32(rgb_img) / 255 | |
# Generate Grad-CAM | |
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True) | |
# Renormalize Grad-CAM inside bounding boxes | |
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) | |
for x1, y1, x2, y2 in boxes: | |
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy()) | |
renormalized_cam = scale_cam_image(renormalized_cam) | |
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True) | |
return cam_image, renormalized_cam_image | |
def xai_yolov5(image): | |
# Load YOLOv5 model | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) | |
model.eval() | |
model.cpu() | |
target_layers = [model.model.model.model[-2]] # Grad-CAM target layer | |
# Run YOLO detection | |
results = model([image]) | |
boxes, colors, names = parse_detections(results) | |
detections_img = draw_detections(boxes, colors, names, image.copy()) | |
# Prepare input tensor for Grad-CAM | |
img_float = np.float32(image) / 255 | |
transform = transforms.ToTensor() | |
tensor = transform(img_float).unsqueeze(0) | |
# Grad-CAM visualization | |
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes) | |
# Combine results | |
final_image = np.hstack((image, cam_image, renormalized_cam_image)) | |
caption = "Results using YOLOv5" | |
return Image.fromarray(final_image), caption |