NeuralVista / yolov5.py
BhumikaMak's picture
Update yolov5.py
ee93934 verified
import torch
import cv2
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
import gradio as gr
import os
from typing import Callable, List, Tuple, Optional
from sklearn.decomposition import NMF
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image
import matplotlib.pyplot as plt
from pytorch_grad_cam.utils.image import show_factorization_on_image
import requests
import yaml
import matplotlib.patches as patches
# Global Color Palette
COLORS = np.random.uniform(0, 255, size=(80, 3))
def parse_detections(results):
detections = results.pandas().xyxy[0].to_dict()
boxes, colors, names, classes = [], [], [], []
for i in range(len(detections["xmin"])):
confidence = detections["confidence"][i]
if confidence < 0.2:
continue
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
name, category = detections["name"][i], int(detections["class"][i])
boxes.append((xmin, ymin, xmax, ymax))
colors.append(COLORS[category])
names.append(name)
classes.append(category)
return boxes, colors, names, classes
def draw_detections(boxes, colors, names, classes, img):
for box, color, name, cls in zip(boxes, colors, names, classes):
xmin, ymin, xmax, ymax = box
label = f"{cls}: {name}" # Combine class ID and name
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
cv2.putText(
img, label, (xmin, ymin - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA
)
return img
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
cam = EigenCAM(model, target_layers)
grayscale_cam = cam(tensor)[0, :, :]
img_float = np.float32(rgb_img) / 255
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
return cam_image, renormalized_cam_image
def xai_yolov5(image,target_lyr = -5, n_components = 8):
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
model.eval()
model.cpu()
target_layers = [model.model.model.model[-2]] # Grad-CAM target layer
# Run YOLO detection
results = model([image])
boxes, colors, names, classes = parse_detections(results)
detections_img = draw_detections(boxes, colors, names,classes, image.copy())
# Prepare input tensor for Grad-CAM
img_float = np.float32(image) / 255
transform = transforms.ToTensor()
tensor = transform(img_float).unsqueeze(0)
# Grad-CAM visualization
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
rgb_img_float, batch_explanations, result = dff_nmf(image, target_lyr = -5, n_components = 8)
#result = np.hstack(result)
im = visualize_batch_explanations(rgb_img_float, batch_explanations) ##########to be displayed
# Combine results
final_image = np.hstack((image, detections_img, renormalized_cam_image))
caption = "Results using YOLOv5"
return Image.fromarray(final_image), caption, result
def dff_l(activations, model, n_components):
batch_size, channels, h, w = activations.shape
print('activation', activations.shape)
target_layer_index = 4
reshaped_activations = activations.transpose((1, 0, 2, 3))
reshaped_activations[np.isnan(reshaped_activations)] = 0
reshaped_activations = reshaped_activations.reshape(
reshaped_activations.shape[0], -1)
offset = reshaped_activations.min(axis=-1)
reshaped_activations = reshaped_activations - offset[:, None]
model = NMF(n_components=n_components, init='random', random_state=0)
W = model.fit_transform(reshaped_activations)
H = model.components_
concepts = W + offset[:, None]
explanations = H.reshape(n_components, batch_size, h, w)
explanations = explanations.transpose((1, 0, 2, 3))
return concepts, explanations
class DeepFeatureFactorization:
def __init__(self,
model: torch.nn.Module,
target_layer: torch.nn.Module,
reshape_transform: Callable = None,
computation_on_concepts=None
):
self.model = model
self.computation_on_concepts = computation_on_concepts
self.activations_and_grads = ActivationsAndGradients(
self.model, [target_layer], reshape_transform)
def __call__(self,
input_tensor: torch.Tensor,
model: torch.nn.Module,
n_components: int = 16):
if isinstance(input_tensor, np.ndarray):
input_tensor = torch.from_numpy(input_tensor)
batch_size, channels, h, w = input_tensor.size()
_ = self.activations_and_grads(input_tensor)
with torch.no_grad():
activations = self.activations_and_grads.activations[0].cpu(
).numpy()
concepts, explanations = dff_l(activations, model, n_components=n_components)
processed_explanations = []
for batch in explanations:
processed_explanations.append(scale_cam_image(batch, (w, h)))
if self.computation_on_concepts:
with torch.no_grad():
concept_tensors = torch.from_numpy(
np.float32(concepts).transpose((1, 0)))
concept_outputs = self.computation_on_concepts(
concept_tensors).cpu().numpy()
return concepts, processed_explanations, concept_outputs
else:
return concepts, processed_explanations, explanations
def __del__(self):
self.activations_and_grads.release()
def __exit__(self, exc_type, exc_value, exc_tb):
self.activations_and_grads.release()
if isinstance(exc_value, IndexError):
# Handle IndexError here...
print(
f"An exception occurred in ActivationSummary with block: {exc_type}. Message: {exc_value}")
return True
def dff_nmf(image, target_lyr, n_components):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mean = [0.485, 0.456, 0.406] # Mean for RGB channels
std = [0.229, 0.224, 0.225] # Standard deviation for RGB channels
img = cv2.resize(image, (640, 640))
rgb_img_float = np.float32(img) / 255.0
input_tensor = torch.from_numpy(rgb_img_float).permute(2, 0, 1).unsqueeze(0).to(device)
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
dff= DeepFeatureFactorization(model=model,
target_layer=model.model.model.model[int(target_lyr)],
computation_on_concepts=None)
concepts, batch_explanations, explanations = dff(input_tensor, model, n_components)
yolov5_categories_url = \
"https://github.com/ultralytics/yolov5/raw/master/data/coco128.yaml" # URL to the YOLOv5 categories file
yaml_data = requests.get(yolov5_categories_url).text
labels = yaml.safe_load(yaml_data)['names'] # Parse the YAML file to get class names
num_classes = model.model.model.model[-1].nc
results = []
for indx in range(explanations[0].shape[0]):
upsampled_input = explanations[0][indx]
upsampled_input = torch.tensor(upsampled_input)
device = next(model.parameters()).device
input_tensor = upsampled_input.unsqueeze(0)
input_tensor = input_tensor.unsqueeze(1).repeat(1, 128, 1, 1)
detection_lyr = model.model.model.model[-1]
output1 = detection_lyr.m[0](input_tensor.to(device))
objectness = output1[..., 4] # Objectness score (index 4)
class_scores = output1[..., 5:] # Class scores (from index 5 onwards, representing 80 classes)
objectness = torch.sigmoid(objectness)
class_scores = torch.sigmoid(class_scores)
confidence_mask = objectness > 0.5
objectness = objectness[confidence_mask]
class_scores = class_scores[confidence_mask]
scores, class_ids = class_scores.max(dim=-1) # Get max class score per cell
scores = scores * objectness # Adjust scores by objectness
boxes = output1[..., :4] # First 4 values are x1, y1, x2, y2
boxes = boxes[confidence_mask] # Filter boxes by confidence mask
fig, ax = plt.subplots(1, figsize=(8, 8))
ax.axis("off")
ax.imshow(torch.tensor(batch_explanations[0][indx]).cpu().numpy(), cmap="plasma") # Display image
top_score_idx = scores.argmax(dim=0) # Get the index of the max score
top_score = scores[top_score_idx].item()
top_class_id = class_ids[top_score_idx].item()
top_box = boxes[top_score_idx].cpu().numpy()
scale_factor = 16
x1, y1, x2, y2 = top_box
x1, y1, x2, y2 = x1 * scale_factor, y1 * scale_factor, x2 * scale_factor, y2 * scale_factor
rect = patches.Rectangle(
(x1, y1), x2 - x1, y2 - y1,
linewidth=2, edgecolor='r', facecolor='none')
ax.add_patch(rect)
predicted_label = labels[top_class_id] # Map ID to label
ax.text(x1, y1, f"{predicted_label}: {top_score:.2f}",
color='r', fontsize=12, verticalalignment='top')
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
fig.canvas.draw() # Draw the canvas to make sure the image is rendered
image_array = np.array(fig.canvas.renderer.buffer_rgba()) # Convert to numpy array
print("____________image_arrya", image_array.shape)
image_resized = cv2.resize(image_array, (640, 640))
rgba_channels = cv2.split(image_resized)
alpha_channel = rgba_channels[3]
rgb_channels = np.stack(rgba_channels[:3], axis=-1)
#overlay_img = (alpha_channel[..., None] * image) + ((1 - alpha_channel[..., None]) * rgb_channels)
#temp = image_array.reshape((rgb_img_float.shape[0],rgb_img_float.shape[1]) )
#visualization = show_factorization_on_image(rgb_img_float, image_array.resize((rgb_img_float.shape)) , image_weight=0.3)
visualization = show_factorization_on_image(rgb_img_float, np.transpose(rgb_channels, (2, 0, 1)), image_weight=0.3)
results.append(visualization)
plt.clf()
#return image_array
return rgb_img_float, batch_explanations, results
def visualize_batch_explanations(rgb_img_float, batch_explanations, image_weight=0.7):
for i, explanation in enumerate(batch_explanations):
# Create visualization for each explanation
print("visualization concepts",rgb_img_float.shape,explanation.shape )
visualization = show_factorization_on_image(rgb_img_float, explanation, image_weight=image_weight)
plt.figure()
plt.imshow(visualization) # Correctly pass the visualization data
plt.title(f'Explanation {i + 1}') # Set the title for each plot
plt.axis('off') # Hide axes
plt.show() # Show the plot
plt.savefig("test_w.png")
print('viz', visualization.shape)
return visualization