Spaces:
Sleeping
Sleeping
Commit
·
383e8f6
1
Parent(s):
672c2bf
Debug: refactor src
Browse files
yolov8.py
CHANGED
@@ -8,21 +8,19 @@ from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
|
8 |
import gradio as gr
|
9 |
from ultralytics import YOLO
|
10 |
|
11 |
-
# Global Color Palette
|
12 |
-
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
13 |
|
14 |
-
|
15 |
-
|
16 |
boxes, colors, names = [], [], []
|
17 |
-
for
|
18 |
-
|
|
|
19 |
if confidence < 0.2:
|
20 |
continue
|
21 |
-
|
22 |
-
|
23 |
-
name, category = detections["name"][i], int(detections["class"][i])
|
24 |
boxes.append((xmin, ymin, xmax, ymax))
|
25 |
-
colors.append(COLORS[
|
26 |
names.append(name)
|
27 |
return boxes, colors, names
|
28 |
|
@@ -53,27 +51,18 @@ def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
|
53 |
return cam_image, renormalized_cam_image
|
54 |
|
55 |
def xai_yolov8s(image):
|
56 |
-
#
|
57 |
-
model = YOLO('yolov8s.pt')
|
58 |
model.eval()
|
59 |
-
model
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
# Run YOLO detection
|
64 |
-
results = model([image])
|
65 |
-
boxes, colors, names = parse_detections(results)
|
66 |
detections_img = draw_detections(boxes, colors, names, image.copy())
|
67 |
-
|
68 |
-
# Prepare input tensor for Grad-CAM
|
69 |
img_float = np.float32(image) / 255
|
70 |
transform = transforms.ToTensor()
|
71 |
tensor = transform(img_float).unsqueeze(0)
|
72 |
-
|
73 |
-
|
74 |
-
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
|
75 |
-
|
76 |
-
# Combine results
|
77 |
final_image = np.hstack((image, cam_image, renormalized_cam_image))
|
78 |
caption = "Results using YOLOv8"
|
79 |
return Image.fromarray(final_image), caption
|
|
|
8 |
import gradio as gr
|
9 |
from ultralytics import YOLO
|
10 |
|
|
|
|
|
11 |
|
12 |
+
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
13 |
+
def parse_detections(detections, model):
|
14 |
boxes, colors, names = [], [], []
|
15 |
+
for detection in detections.boxes:
|
16 |
+
xmin, ymin, xmax, ymax = map(int, detection.xyxy[0].tolist())
|
17 |
+
confidence = detection.conf.item()
|
18 |
if confidence < 0.2:
|
19 |
continue
|
20 |
+
class_id = int(detection.cls.item())
|
21 |
+
name = model.names[class_id]
|
|
|
22 |
boxes.append((xmin, ymin, xmax, ymax))
|
23 |
+
colors.append(COLORS[class_id])
|
24 |
names.append(name)
|
25 |
return boxes, colors, names
|
26 |
|
|
|
51 |
return cam_image, renormalized_cam_image
|
52 |
|
53 |
def xai_yolov8s(image):
|
54 |
+
model = YOLO('yolov8s.pt') # Ensure the model weights are available
|
|
|
55 |
model.eval()
|
56 |
+
results = model(image)
|
57 |
+
detections = results[0]
|
58 |
+
|
59 |
+
boxes, colors, names = parse_detections(detections, model)
|
|
|
|
|
|
|
60 |
detections_img = draw_detections(boxes, colors, names, image.copy())
|
|
|
|
|
61 |
img_float = np.float32(image) / 255
|
62 |
transform = transforms.ToTensor()
|
63 |
tensor = transform(img_float).unsqueeze(0)
|
64 |
+
target_layers = [model.model[-2]] # Adjust according to YOLOv8 architecture
|
65 |
+
cam_image, renormalized_cam_image = generate_cam_image(model.model, target_layers, tensor, image, boxes)
|
|
|
|
|
|
|
66 |
final_image = np.hstack((image, cam_image, renormalized_cam_image))
|
67 |
caption = "Results using YOLOv8"
|
68 |
return Image.fromarray(final_image), caption
|