Spaces:
Sleeping
Sleeping
debug: model not subscrible
Browse files
yolov8.py
CHANGED
@@ -173,7 +173,7 @@ def dff_nmf(image, target_lyr, n_components):
|
|
173 |
|
174 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
175 |
dff= DeepFeatureFactorization(model=model,
|
176 |
-
target_layer=model.model.model[int(target_lyr)],
|
177 |
computation_on_concepts=None)
|
178 |
|
179 |
concepts, batch_explanations, explanations = dff(input_tensor, model, n_components)
|
@@ -183,7 +183,7 @@ def dff_nmf(image, target_lyr, n_components):
|
|
183 |
# "https://github.com/ultralytics/yolov5/raw/master/data/coco128.yaml" # URL to the YOLOv5 categories file
|
184 |
#yaml_data = requests.get(yolov5_categories_url).text
|
185 |
# labels = yaml.safe_load(yaml_data)['names'] # Parse the YAML file to get class names
|
186 |
-
num_classes = model.model.model[-1].nc
|
187 |
results = []
|
188 |
for indx in range(explanations[0].shape[0]):
|
189 |
upsampled_input = explanations[0][indx]
|
@@ -191,7 +191,7 @@ def dff_nmf(image, target_lyr, n_components):
|
|
191 |
device = next(model.parameters()).device
|
192 |
input_tensor = upsampled_input.unsqueeze(0)
|
193 |
input_tensor = input_tensor.unsqueeze(1).repeat(1, 128, 1, 1)
|
194 |
-
detection_lyr = model.model.model[-1]
|
195 |
output1 = detection_lyr.m[0](input_tensor.to(device))
|
196 |
objectness = output1[..., 4] # Objectness score (index 4)
|
197 |
class_scores = output1[..., 5:] # Class scores (from index 5 onwards, representing 80 classes)
|
|
|
173 |
|
174 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
175 |
dff= DeepFeatureFactorization(model=model,
|
176 |
+
target_layer=model.model.model.model[int(target_lyr)],
|
177 |
computation_on_concepts=None)
|
178 |
|
179 |
concepts, batch_explanations, explanations = dff(input_tensor, model, n_components)
|
|
|
183 |
# "https://github.com/ultralytics/yolov5/raw/master/data/coco128.yaml" # URL to the YOLOv5 categories file
|
184 |
#yaml_data = requests.get(yolov5_categories_url).text
|
185 |
# labels = yaml.safe_load(yaml_data)['names'] # Parse the YAML file to get class names
|
186 |
+
num_classes = model.model.model.model[-1].nc
|
187 |
results = []
|
188 |
for indx in range(explanations[0].shape[0]):
|
189 |
upsampled_input = explanations[0][indx]
|
|
|
191 |
device = next(model.parameters()).device
|
192 |
input_tensor = upsampled_input.unsqueeze(0)
|
193 |
input_tensor = input_tensor.unsqueeze(1).repeat(1, 128, 1, 1)
|
194 |
+
detection_lyr = model.model.model.model[-1]
|
195 |
output1 = detection_lyr.m[0](input_tensor.to(device))
|
196 |
objectness = output1[..., 4] # Objectness score (index 4)
|
197 |
class_scores = output1[..., 5:] # Class scores (from index 5 onwards, representing 80 classes)
|