import torch import cv2 import numpy as np from PIL import Image import torchvision.transforms as transforms from pytorch_grad_cam import EigenCAM from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image import gradio as gr from ultralytics import YOLO COLORS = np.random.uniform(0, 255, size=(80, 3)) def parse_detections(detections, model): boxes, colors, names, classes = [], [], [], [] for detection in detections.boxes: xmin, ymin, xmax, ymax = map(int, detection.xyxy[0].tolist()) confidence = detection.conf.item() if confidence < 0.2: continue class_id = int(detection.cls.item()) name = model.names[class_id] boxes.append((xmin, ymin, xmax, ymax)) colors.append(COLORS[class_id]) names.append(name) classes.append(class_id) return boxes, colors, names, classes def draw_detections(boxes, colors, names, classes, img): for box, color, name, cls in zip(boxes, colors, names, classes): xmin, ymin, xmax, ymax = box label = f"{cls}: {name}" # Combine class ID and name cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) cv2.putText( img, label, (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, lineType=cv2.LINE_AA ) return img def generate_cam_image(model, target_layers, tensor, rgb_img, boxes): cam = EigenCAM(model, target_layers) model_output = model(tensor)[0] # Adjust based on output structure grayscale_cam = cam(tensor, targets=model_output)[0, :, :] img_float = np.float32(rgb_img) / 255 cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True) renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) for x1, y1, x2, y2 in boxes: renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy()) renormalized_cam = scale_cam_image(renormalized_cam) renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True) return cam_image, renormalized_cam_image def xai_yolov8s(image): model = YOLO('yolov8s.pt') # Ensure the model weights are available model.eval() results = model(image) detections = results[0] boxes, colors, names, classes = parse_detections(detections, model) detections_img = draw_detections(boxes, colors, names, classes, image.copy()) img_float = np.float32(image) / 255 transform = transforms.ToTensor() tensor = transform(img_float).unsqueeze(0) target_layers = [model.model.model[-2]] # Adjust to YOLOv8 architecture cam_image, renormalized_cam_image = generate_cam_image(model.model, target_layers, tensor, image, boxes) final_image = np.hstack((image, detections_img, renormalized_cam_image)) caption = "Results using YOLOv8" return Image.fromarray(final_image), caption