from ultralytics import YOLO import torch import cv2 import numpy as np from PIL import Image import torchvision.transforms as transforms from pytorch_grad_cam import EigenCAM from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image import gradio as gr # Global Color Palette COLORS = np.random.uniform(0, 255, size=(80, 3)) def parse_detections(results): boxes, colors, names = [], [], [] for result in results: # Accessing boxes directly from the result for box in result.boxes: xmin, ymin, xmax, ymax = box.xyxy[0].int().tolist() # Convert to list of integers category = int(box.cls[0].item()) # Class index name = result.names[category] # Get class name from names boxes.append((xmin, ymin, xmax, ymax)) colors.append(COLORS[category]) # Ensure COLORS is defined elsewhere in your code names.append(name) return boxes, colors, names def draw_detections(boxes, colors, names, img): for box, color, name in zip(boxes, colors, names): xmin, ymin, xmax, ymax = box cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) cv2.putText(img, name, (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, lineType=cv2.LINE_AA) return img def generate_cam_image(model, target_layers, tensor, rgb_img, boxes): cam = EigenCAM(model, target_layers) grayscale_cam = cam(tensor)[0, :, :] img_float = np.float32(rgb_img) / 255 cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True) renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) for x1, y1, x2, y2 in boxes: renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy()) renormalized_cam = scale_cam_image(renormalized_cam) renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True) return cam_image, renormalized_cam_image def xai_yolov8n(image): model = YOLO('yolov8n.pt') # Load YOLOv8n pre-trained weights model.eval() # Check if GPU is available and use it device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) target_layers = [model.model.model[-2]] # Grad-CAM target layer # Process the image through the model results = model([image]) # If results are a list, extract the first element (detected results) if isinstance(results, list): results = results[0] # Extracting the first result (if list) # Ensure that outputs are in tensor form logits = results.pred[0] # Get the prediction tensor from the results # Parse the detections boxes, colors, names = parse_detections([results]) # Ensure results are passed as a list detections_img = draw_detections(boxes, colors, names, image.copy()) # Prepare image for Grad-CAM img_float = np.float32(image) / 255 transform = transforms.ToTensor() tensor = transform(img_float).unsqueeze(0).to(device) # Ensure tensor is on the right device # Generate CAM images cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes) # Combine original image, CAM image, and renormalized CAM image final_image = np.hstack((image, cam_image, renormalized_cam_image)) # Return final image and a caption caption = "Results using YOLOv8n" return Image.fromarray(final_image), caption