|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from fastapi.responses import JSONResponse |
|
import torch |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
import os |
|
import re |
|
import logging |
|
|
|
app = FastAPI() |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
os.environ['TRANSFORMERS_CACHE'] = os.getenv('TRANSFORMERS_CACHE', '/app/cache') |
|
|
|
|
|
model_name = "Bijoy09/MObilebert" |
|
try: |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
logger.info("Model and tokenizer loaded successfully") |
|
except Exception as e: |
|
logger.error(f"Failed to load model or tokenizer: {e}") |
|
raise RuntimeError(f"Failed to load model or tokenizer: {e}") |
|
|
|
class TextRequest(BaseModel): |
|
text: str |
|
|
|
class BatchTextRequest(BaseModel): |
|
texts: list[str] |
|
|
|
|
|
bangla_regex = re.compile('[\u0980-\u09FF]') |
|
|
|
def contains_bangla(text): |
|
return bool(bangla_regex.search(text)) |
|
|
|
def remove_non_bangla(text): |
|
return ''.join(bangla_regex.findall(text)) |
|
|
|
@app.post("/batch_predict/") |
|
async def batch_predict(request: BatchTextRequest): |
|
try: |
|
model.eval() |
|
|
|
|
|
results = [] |
|
|
|
for idx, text in enumerate(request.texts): |
|
logger.info(f" texts: {text}") |
|
|
|
|
|
if not contains_bangla(text): |
|
results.append({"id": idx + 1, "text": text, "prediction": "other"}) |
|
continue |
|
|
|
|
|
modified_text = remove_non_bangla(text) |
|
logger.info(f"modified text: {modified_text}") |
|
|
|
|
|
inputs = tokenizer.encode_plus( |
|
modified_text, |
|
add_special_tokens=True, |
|
max_length=64, |
|
truncation=True, |
|
padding='max_length', |
|
return_attention_mask=True, |
|
return_tensors='pt' |
|
) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits |
|
prediction = torch.argmax(logits, dim=1).item() |
|
label = "Spam" if prediction == 1 else "Ham" |
|
results.append({"id": idx + 1, "text": text, "prediction": label}) |
|
|
|
logger.info(f"Batch prediction results: {results}") |
|
return JSONResponse(content={"results": results}, media_type="application/json; charset=utf-8") |
|
|
|
except Exception as e: |
|
logger.error(f"Batch prediction failed: {e}") |
|
raise HTTPException(status_code=500, detail="Batch prediction failed. Please try again.") |
|
|
|
@app.get("/") |
|
async def root(): |
|
return {"message": "Welcome to the MobileBERT API"} |