Bijoy09's picture
Update app.py
523e48e verified
raw
history blame
3.02 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import os
import re
import logging
app = FastAPI()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set the cache directory for Hugging Face
os.environ['TRANSFORMERS_CACHE'] = os.getenv('TRANSFORMERS_CACHE', '/app/cache')
# Load model and tokenizer
model_name = "Bijoy09/MObilebert"
try:
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info("Model and tokenizer loaded successfully")
except Exception as e:
logger.error(f"Failed to load model or tokenizer: {e}")
raise RuntimeError(f"Failed to load model or tokenizer: {e}")
class TextRequest(BaseModel):
text: str
class BatchTextRequest(BaseModel):
texts: list[str]
# Regular expression to detect Bangla characters
bangla_regex = re.compile('[\u0980-\u09FF]')
def contains_bangla(text):
return bool(bangla_regex.search(text))
def remove_non_bangla(text):
return ''.join(bangla_regex.findall(text))
@app.post("/batch_predict/")
async def batch_predict(request: BatchTextRequest):
try:
model.eval()
# Prepare the batch results
results = []
for idx, text in enumerate(request.texts):
logger.info(f" texts: {text}")
# Check if text contains Bangla characters
if not contains_bangla(text):
results.append({"id": idx + 1, "text": text, "prediction": "other"})
continue
# Remove non-Bangla characters
modified_text = remove_non_bangla(text)
logger.info(f"modified text: {modified_text}")
# Encode and predict for texts containing Bangla characters
inputs = tokenizer.encode_plus(
modified_text,
add_special_tokens=True,
max_length=64,
truncation=True,
padding='max_length',
return_attention_mask=True,
return_tensors='pt'
)
with torch.no_grad():
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
prediction = torch.argmax(logits, dim=1).item()
label = "Spam" if prediction == 1 else "Ham"
results.append({"id": idx + 1, "text": text, "prediction": label})
logger.info(f"Batch prediction results: {results}")
return JSONResponse(content={"results": results}, media_type="application/json; charset=utf-8")
except Exception as e:
logger.error(f"Batch prediction failed: {e}")
raise HTTPException(status_code=500, detail="Batch prediction failed. Please try again.")
@app.get("/")
async def root():
return {"message": "Welcome to the MobileBERT API"}