Update app.py
Browse files
app.py
CHANGED
@@ -45,60 +45,60 @@ async def predict(request: TextRequest):
|
|
45 |
raise HTTPException(status_code=500, detail=f"Prediction failed: {e}")
|
46 |
|
47 |
|
48 |
-
# @app.post("/batch_predict")
|
49 |
-
# async def batch_predict(request: BatchTextRequest):
|
50 |
-
# try:
|
51 |
-
# model.eval()
|
52 |
-
# results = []
|
53 |
-
# for idx, text in enumerate(request.texts):
|
54 |
-
# inputs = tokenizer.encode_plus(
|
55 |
-
# text,
|
56 |
-
# add_special_tokens=True,
|
57 |
-
# max_length=64,
|
58 |
-
# truncation=True,
|
59 |
-
# padding='max_length',
|
60 |
-
# return_attention_mask=True,
|
61 |
-
# return_tensors='pt'
|
62 |
-
# )
|
63 |
-
# with torch.no_grad():
|
64 |
-
# logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
65 |
-
# prediction = torch.argmax(logits, dim=1).item()
|
66 |
-
# results.append({"id": idx + 1, "text": text, "prediction": "Spam" if prediction == 1 else "Ham"})
|
67 |
-
# return {"results": results}
|
68 |
-
# except Exception as e:
|
69 |
-
# raise HTTPException(status_code=500, detail=f"Batch prediction failed: {e}")
|
70 |
@app.post("/batch_predict")
|
71 |
async def batch_predict(request: BatchTextRequest):
|
72 |
try:
|
73 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
|
104 |
@app.get("/")
|
|
|
45 |
raise HTTPException(status_code=500, detail=f"Prediction failed: {e}")
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
@app.post("/batch_predict")
|
49 |
async def batch_predict(request: BatchTextRequest):
|
50 |
try:
|
51 |
model.eval()
|
52 |
+
results = []
|
53 |
+
for idx, text in enumerate(request.texts):
|
54 |
+
inputs = tokenizer.encode_plus(
|
55 |
+
text,
|
56 |
+
add_special_tokens=True,
|
57 |
+
max_length=64,
|
58 |
+
truncation=True,
|
59 |
+
padding='max_length',
|
60 |
+
return_attention_mask=True,
|
61 |
+
return_tensors='pt'
|
62 |
+
)
|
63 |
+
with torch.no_grad():
|
64 |
+
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
65 |
+
prediction = torch.argmax(logits, dim=1).item()
|
66 |
+
results.append({"id": idx + 1, "text": text, "prediction": "Spam" if prediction == 1 else "Ham"})
|
67 |
+
return {"results": results}
|
68 |
+
except Exception as e:
|
69 |
+
raise HTTPException(status_code=500, detail=f"Batch prediction failed: {e}")
|
70 |
+
# @app.post("/batch_predict")
|
71 |
+
# async def batch_predict(request: BatchTextRequest):
|
72 |
+
# try:
|
73 |
+
# model.eval()
|
74 |
|
75 |
+
# # Batch encode all texts in the request at once
|
76 |
+
# inputs = tokenizer(
|
77 |
+
# request.texts,
|
78 |
+
# add_special_tokens=True,
|
79 |
+
# max_length=64,
|
80 |
+
# truncation=True,
|
81 |
+
# padding='max_length',
|
82 |
+
# return_attention_mask=True,
|
83 |
+
# return_tensors='pt'
|
84 |
+
# )
|
85 |
|
86 |
+
# # Run batch inference
|
87 |
+
# with torch.no_grad():
|
88 |
+
# logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
89 |
+
# predictions = torch.argmax(logits, dim=1).tolist()
|
90 |
|
91 |
+
# # Format results
|
92 |
+
# results = [
|
93 |
+
# {"id": idx + 1, "text": text, "prediction": "Spam" if pred == 1 else "Ham"}
|
94 |
+
# for idx, (text, pred) in enumerate(zip(request.texts, predictions))
|
95 |
+
# ]
|
96 |
|
97 |
+
# return {"results": results}
|
98 |
|
99 |
+
# except Exception as e:
|
100 |
+
# logging.error(f"Batch prediction failed: {e}")
|
101 |
+
# raise HTTPException(status_code=500, detail="Batch prediction failed. Please try again.")
|
102 |
|
103 |
|
104 |
@app.get("/")
|