Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
# Load model and tokenizer
|
9 |
+
model_name = "Bijoy09/your_mobilebert_model_repo" # replace with your Hugging Face repo name
|
10 |
+
try:
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
except Exception as e:
|
14 |
+
raise RuntimeError(f"Failed to load model or tokenizer: {e}")
|
15 |
+
|
16 |
+
class TextRequest(BaseModel):
|
17 |
+
text: str
|
18 |
+
|
19 |
+
@app.post("/predict/")
|
20 |
+
async def predict(request: TextRequest):
|
21 |
+
try:
|
22 |
+
model.eval()
|
23 |
+
inputs = tokenizer.encode_plus(
|
24 |
+
request.text,
|
25 |
+
add_special_tokens=True,
|
26 |
+
max_length=64,
|
27 |
+
truncation=True,
|
28 |
+
padding='max_length',
|
29 |
+
return_attention_mask=True,
|
30 |
+
return_tensors='pt'
|
31 |
+
)
|
32 |
+
with torch.no_grad():
|
33 |
+
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
34 |
+
prediction = torch.argmax(logits, dim=1).item()
|
35 |
+
return {"prediction": "Spam" if prediction == 1 else "Ham"}
|
36 |
+
except Exception as e:
|
37 |
+
raise HTTPException(status_code=500, detail=f"Prediction failed: {e}")
|
38 |
+
|
39 |
+
@app.get("/")
|
40 |
+
async def root():
|
41 |
+
return {"message": "Welcome to the MobileBERT API"}
|