Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,32 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
-
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel
|
4 |
import torch
|
5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
6 |
import os
|
7 |
-
import logging
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
# Configure logging
|
12 |
-
logging.basicConfig(level=logging.INFO)
|
13 |
-
logger = logging.getLogger(__name__)
|
14 |
-
|
15 |
# Set the cache directory for Hugging Face
|
16 |
os.environ['TRANSFORMERS_CACHE'] = os.getenv('TRANSFORMERS_CACHE', '/app/cache')
|
17 |
|
18 |
-
# Enable CORS
|
19 |
-
app.add_middleware(
|
20 |
-
CORSMiddleware,
|
21 |
-
allow_origins=["*"],
|
22 |
-
allow_credentials=True,
|
23 |
-
allow_methods=["*"],
|
24 |
-
allow_headers=["*"],
|
25 |
-
)
|
26 |
-
|
27 |
# Load model and tokenizer
|
28 |
model_name = "Bijoy09/MObilebert"
|
29 |
try:
|
30 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
31 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
-
logger.info("Model and tokenizer loaded successfully")
|
33 |
except Exception as e:
|
34 |
-
logger.error(f"Failed to load model or tokenizer: {e}")
|
35 |
raise RuntimeError(f"Failed to load model or tokenizer: {e}")
|
36 |
|
37 |
class TextRequest(BaseModel):
|
38 |
text: str
|
39 |
|
|
|
|
|
|
|
40 |
@app.post("/predict/")
|
41 |
@app.post("/predict")
|
42 |
async def predict(request: TextRequest):
|
43 |
try:
|
44 |
-
logger.info(f"Received text: {request.text}")
|
45 |
model.eval()
|
46 |
inputs = tokenizer.encode_plus(
|
47 |
request.text,
|
@@ -52,16 +37,37 @@ async def predict(request: TextRequest):
|
|
52 |
return_attention_mask=True,
|
53 |
return_tensors='pt'
|
54 |
)
|
55 |
-
logger.info(f"Tokenized inputs: {inputs}")
|
56 |
with torch.no_grad():
|
57 |
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
58 |
-
logger.info(f"Model logits: {logits}")
|
59 |
prediction = torch.argmax(logits, dim=1).item()
|
60 |
return {"prediction": "Spam" if prediction == 1 else "Ham"}
|
61 |
except Exception as e:
|
62 |
-
logger.error(f"Prediction failed: {e}")
|
63 |
raise HTTPException(status_code=500, detail=f"Prediction failed: {e}")
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
@app.get("/")
|
66 |
async def root():
|
67 |
return {"message": "Welcome to the MobileBERT API"}
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
|
|
2 |
from pydantic import BaseModel
|
3 |
import torch
|
4 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
import os
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
|
|
|
|
|
|
|
|
9 |
# Set the cache directory for Hugging Face
|
10 |
os.environ['TRANSFORMERS_CACHE'] = os.getenv('TRANSFORMERS_CACHE', '/app/cache')
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Load model and tokenizer
|
13 |
model_name = "Bijoy09/MObilebert"
|
14 |
try:
|
15 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
17 |
except Exception as e:
|
|
|
18 |
raise RuntimeError(f"Failed to load model or tokenizer: {e}")
|
19 |
|
20 |
class TextRequest(BaseModel):
|
21 |
text: str
|
22 |
|
23 |
+
class BatchTextRequest(BaseModel):
|
24 |
+
texts: list[str]
|
25 |
+
|
26 |
@app.post("/predict/")
|
27 |
@app.post("/predict")
|
28 |
async def predict(request: TextRequest):
|
29 |
try:
|
|
|
30 |
model.eval()
|
31 |
inputs = tokenizer.encode_plus(
|
32 |
request.text,
|
|
|
37 |
return_attention_mask=True,
|
38 |
return_tensors='pt'
|
39 |
)
|
|
|
40 |
with torch.no_grad():
|
41 |
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
|
|
42 |
prediction = torch.argmax(logits, dim=1).item()
|
43 |
return {"prediction": "Spam" if prediction == 1 else "Ham"}
|
44 |
except Exception as e:
|
|
|
45 |
raise HTTPException(status_code=500, detail=f"Prediction failed: {e}")
|
46 |
|
47 |
+
@app.post("/batch_predict/")
|
48 |
+
@app.post("/batch_predict")
|
49 |
+
async def batch_predict(request: BatchTextRequest):
|
50 |
+
try:
|
51 |
+
model.eval()
|
52 |
+
results = []
|
53 |
+
for text in request.texts:
|
54 |
+
inputs = tokenizer.encode_plus(
|
55 |
+
text,
|
56 |
+
add_special_tokens=True,
|
57 |
+
max_length=64,
|
58 |
+
truncation=True,
|
59 |
+
padding='max_length',
|
60 |
+
return_attention_mask=True,
|
61 |
+
return_tensors='pt'
|
62 |
+
)
|
63 |
+
with torch.no_grad():
|
64 |
+
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
65 |
+
prediction = torch.argmax(logits, dim=1).item()
|
66 |
+
results.append({"text": text, "prediction": "Spam" if prediction == 1 else "Ham"})
|
67 |
+
return {"results": results}
|
68 |
+
except Exception as e:
|
69 |
+
raise HTTPException(status_code=500, detail=f"Batch prediction failed: {e}")
|
70 |
+
|
71 |
@app.get("/")
|
72 |
async def root():
|
73 |
return {"message": "Welcome to the MobileBERT API"}
|