Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,37 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
|
|
2 |
from pydantic import BaseModel
|
3 |
import torch
|
4 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
import os
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
|
|
|
|
|
|
|
|
9 |
# Set the cache directory for Hugging Face
|
10 |
os.environ['TRANSFORMERS_CACHE'] = os.getenv('TRANSFORMERS_CACHE', '/app/cache')
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Load model and tokenizer
|
13 |
model_name = "Bijoy09/MObilebert"
|
14 |
try:
|
15 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
17 |
except Exception as e:
|
|
|
18 |
raise RuntimeError(f"Failed to load model or tokenizer: {e}")
|
19 |
|
20 |
class TextRequest(BaseModel):
|
@@ -23,6 +40,7 @@ class TextRequest(BaseModel):
|
|
23 |
@app.post("/predict/")
|
24 |
async def predict(request: TextRequest):
|
25 |
try:
|
|
|
26 |
model.eval()
|
27 |
inputs = tokenizer.encode_plus(
|
28 |
request.text,
|
@@ -33,11 +51,14 @@ async def predict(request: TextRequest):
|
|
33 |
return_attention_mask=True,
|
34 |
return_tensors='pt'
|
35 |
)
|
|
|
36 |
with torch.no_grad():
|
37 |
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
|
|
38 |
prediction = torch.argmax(logits, dim=1).item()
|
39 |
return {"prediction": "Spam" if prediction == 1 else "Ham"}
|
40 |
except Exception as e:
|
|
|
41 |
raise HTTPException(status_code=500, detail=f"Prediction failed: {e}")
|
42 |
|
43 |
@app.get("/")
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel
|
4 |
import torch
|
5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
6 |
import os
|
7 |
+
import logging
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
# Configure logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
# Set the cache directory for Hugging Face
|
16 |
os.environ['TRANSFORMERS_CACHE'] = os.getenv('TRANSFORMERS_CACHE', '/app/cache')
|
17 |
|
18 |
+
# Enable CORS
|
19 |
+
app.add_middleware(
|
20 |
+
CORSMiddleware,
|
21 |
+
allow_origins=["*"],
|
22 |
+
allow_credentials=True,
|
23 |
+
allow_methods=["*"],
|
24 |
+
allow_headers=["*"],
|
25 |
+
)
|
26 |
+
|
27 |
# Load model and tokenizer
|
28 |
model_name = "Bijoy09/MObilebert"
|
29 |
try:
|
30 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
31 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
logger.info("Model and tokenizer loaded successfully")
|
33 |
except Exception as e:
|
34 |
+
logger.error(f"Failed to load model or tokenizer: {e}")
|
35 |
raise RuntimeError(f"Failed to load model or tokenizer: {e}")
|
36 |
|
37 |
class TextRequest(BaseModel):
|
|
|
40 |
@app.post("/predict/")
|
41 |
async def predict(request: TextRequest):
|
42 |
try:
|
43 |
+
logger.info(f"Received text: {request.text}")
|
44 |
model.eval()
|
45 |
inputs = tokenizer.encode_plus(
|
46 |
request.text,
|
|
|
51 |
return_attention_mask=True,
|
52 |
return_tensors='pt'
|
53 |
)
|
54 |
+
logger.info(f"Tokenized inputs: {inputs}")
|
55 |
with torch.no_grad():
|
56 |
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
|
57 |
+
logger.info(f"Model logits: {logits}")
|
58 |
prediction = torch.argmax(logits, dim=1).item()
|
59 |
return {"prediction": "Spam" if prediction == 1 else "Ham"}
|
60 |
except Exception as e:
|
61 |
+
logger.error(f"Prediction failed: {e}")
|
62 |
raise HTTPException(status_code=500, detail=f"Prediction failed: {e}")
|
63 |
|
64 |
@app.get("/")
|