Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,79 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
3 |
+
from threading import Thread
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
from unsloth import FastLanguageModel
|
6 |
+
from transformers import TextStreamer
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
8 |
+
|
9 |
+
config = PeftConfig.from_pretrained("bilgee/Llama-3.1-8B-MN_Instruct")
|
10 |
+
model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3-8b", torch_dtype = torch.float16)
|
11 |
+
model = PeftModel.from_pretrained(model, "bilgee/Llama-3.1-8B-MN_Instruct")
|
12 |
+
|
13 |
+
#load tokenizer
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("bilgee/Llama-3.1-8B-MN_Instruct")
|
15 |
+
|
16 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
17 |
+
|
18 |
+
### Instruction:
|
19 |
+
{}
|
20 |
+
|
21 |
+
### Input:
|
22 |
+
{}
|
23 |
+
|
24 |
+
### Response:
|
25 |
+
{}"""
|
26 |
+
|
27 |
+
|
28 |
+
# Enable native 2x faster inference
|
29 |
+
FastLanguageModel.for_inference(model)
|
30 |
+
|
31 |
+
# Create a text streamer
|
32 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt=False,skip_special_tokens=True)
|
33 |
+
|
34 |
+
# Get the device based on GPU availability
|
35 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
36 |
+
|
37 |
+
# Move model into device
|
38 |
+
model = model.to(device)
|
39 |
+
|
40 |
+
class StopOnTokens(StoppingCriteria):
|
41 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
42 |
+
stop_ids = [29, 0]
|
43 |
+
for stop_id in stop_ids:
|
44 |
+
if input_ids[0][-1] == stop_id:
|
45 |
+
return True
|
46 |
+
return False
|
47 |
+
|
48 |
+
# Current implementation does not support conversation based on previous conversation.
|
49 |
+
# Highly recommend to experiment on various hyper parameters to compare qualities.
|
50 |
+
def predict(message, history):
|
51 |
+
stop = StopOnTokens()
|
52 |
+
messages = alpaca_prompt.format(
|
53 |
+
message,
|
54 |
+
"",
|
55 |
+
"",
|
56 |
+
)
|
57 |
+
|
58 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
59 |
+
|
60 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
61 |
+
generate_kwargs = dict(
|
62 |
+
model_inputs,
|
63 |
+
streamer=streamer,
|
64 |
+
max_new_tokens=1024,
|
65 |
+
top_p=0.95,
|
66 |
+
temperature=0.001,
|
67 |
+
repetition_penalty=1.1,
|
68 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
69 |
+
)
|
70 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
71 |
+
t.start()
|
72 |
+
|
73 |
+
partial_message = ""
|
74 |
+
for new_token in streamer:
|
75 |
+
if new_token != '<':
|
76 |
+
partial_message += new_token
|
77 |
+
yield partial_message
|
78 |
+
|
79 |
+
gr.ChatInterface(predict).launch(debug=True, share=True, show_api=True)
|