Bilgee commited on
Commit
a877dc3
·
verified ·
1 Parent(s): 916daf0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -62
app.py CHANGED
@@ -1,63 +1,79 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
  import gradio as gr
3
+ from threading import Thread
4
+ from peft import PeftModel, PeftConfig
5
+ from unsloth import FastLanguageModel
6
+ from transformers import TextStreamer
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
8
+
9
+ config = PeftConfig.from_pretrained("bilgee/Llama-3.1-8B-MN_Instruct")
10
+ model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3-8b", torch_dtype = torch.float16)
11
+ model = PeftModel.from_pretrained(model, "bilgee/Llama-3.1-8B-MN_Instruct")
12
+
13
+ #load tokenizer
14
+ tokenizer = AutoTokenizer.from_pretrained("bilgee/Llama-3.1-8B-MN_Instruct")
15
+
16
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
17
+
18
+ ### Instruction:
19
+ {}
20
+
21
+ ### Input:
22
+ {}
23
+
24
+ ### Response:
25
+ {}"""
26
+
27
+
28
+ # Enable native 2x faster inference
29
+ FastLanguageModel.for_inference(model)
30
+
31
+ # Create a text streamer
32
+ text_streamer = TextStreamer(tokenizer, skip_prompt=False,skip_special_tokens=True)
33
+
34
+ # Get the device based on GPU availability
35
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
36
+
37
+ # Move model into device
38
+ model = model.to(device)
39
+
40
+ class StopOnTokens(StoppingCriteria):
41
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
42
+ stop_ids = [29, 0]
43
+ for stop_id in stop_ids:
44
+ if input_ids[0][-1] == stop_id:
45
+ return True
46
+ return False
47
+
48
+ # Current implementation does not support conversation based on previous conversation.
49
+ # Highly recommend to experiment on various hyper parameters to compare qualities.
50
+ def predict(message, history):
51
+ stop = StopOnTokens()
52
+ messages = alpaca_prompt.format(
53
+ message,
54
+ "",
55
+ "",
56
+ )
57
+
58
+ model_inputs = tokenizer([messages], return_tensors="pt").to(device)
59
+
60
+ streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
61
+ generate_kwargs = dict(
62
+ model_inputs,
63
+ streamer=streamer,
64
+ max_new_tokens=1024,
65
+ top_p=0.95,
66
+ temperature=0.001,
67
+ repetition_penalty=1.1,
68
+ stopping_criteria=StoppingCriteriaList([stop])
69
+ )
70
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
71
+ t.start()
72
+
73
+ partial_message = ""
74
+ for new_token in streamer:
75
+ if new_token != '<':
76
+ partial_message += new_token
77
+ yield partial_message
78
+
79
+ gr.ChatInterface(predict).launch(debug=True, share=True, show_api=True)