File size: 810 Bytes
aaa9850 588ff0c aaa9850 a30b0ed aaa9850 a19509f aaa9850 62519b7 aaa9850 b7d4893 e4917a3 aaa9850 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
import numpy as np
model_name = "Bittar/outputs"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
mapping = {
0: 'negative',
1: 'positive'
}
def predict(text):
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
predictions = outputs.logits
return mapping[predictions.argmax().item()]
iface = gr.Interface(
fn=predict,
inputs="text",
outputs="text",
layout="vertical",
title="Movie feelings classifier",
description="do u feel positive or negative about a movie? Write your review down and find out! (only works in english)"
)
iface.launch(share=True) |