import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import numpy as np model_name = "Bittar/outputs" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) mapping = { 0: 'negative', 1: 'positive' } def predict(text): inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) predictions = outputs.logits return mapping[predictions.argmax().item()] iface = gr.Interface( fn=predict, inputs="text", outputs="text", layout="vertical", title="Movie feelings classifier", description="do u feel positive or negative about a movie? Right your review down and find out! (only works in english)" ) iface.launch(share=True)