File size: 6,419 Bytes
2628df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import re
import time
import sys
import subprocess
import gradio as gr
from pydub import AudioSegment
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import hf_hub_download

# Configuración inicial
os.environ["COQUI_TOS_AGREED"] = "1"

def check_and_install(package):
    try:
        __import__(package)
    except ImportError:
        print(f"{package} no está instalado. Instalando...")
        subprocess.check_call([sys.executable, "-m", "pip", "install", package])

def setup_mecab_and_unidic():
    check_and_install("MeCab")
    check_and_install("unidic-lite")
    
    try:
        import unidic
        mecab_dic_dir = unidic.DICDIR
        os.environ['MECABRC'] = os.path.join(mecab_dic_dir, 'mecabrc')
        print(f"MECABRC configurado en: {os.environ['MECABRC']}")
        
        # Intentar descargar UniDic si es necesario
        subprocess.check_call([sys.executable, '-m', 'unidic', 'download'])
        print("UniDic descargado correctamente")
        
        # Prueba de MeCab
        import MeCab
        tagger = MeCab.Tagger()
        result = tagger.parse("これはテストです。")
        print("Prueba de MeCab exitosa. Salida:")
        print(result)
    except Exception as e:
        print(f"Error durante la configuración de MeCab/UniDic: {e}")
        raise

print("Configurando MeCab y UniDic...")
setup_mecab_and_unidic()

# Descargar y configurar el modelo
print("Descargando y configurando el modelo...")
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]

for file_name in files_to_download:
    print(f"Descargando {file_name} de {repo_id}")
    hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)

config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")

config = XttsConfig()
config.load_json(config_path)

model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=False)

print("Modelo cargado en CPU")

# Funciones auxiliares
def split_text(text):
    return re.split(r'(?<=[.!?])\s+', text)

def predict(prompt, language, reference_audio):
    try:
        if len(prompt) < 2 or len(prompt) > 600:
            return None, "El texto debe tener entre 2 y 600 caracteres."

        sentences = split_text(prompt)

        temperature = config.inference.get("temperature", 0.75)
        repetition_penalty = config.inference.get("repetition_penalty", 5.0)
        gpt_cond_len = config.inference.get("gpt_cond_len", 30)
        gpt_cond_chunk_len = config.inference.get("gpt_cond_chunk_len", 4)
        max_ref_length = config.inference.get("max_ref_length", 60)

        gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
            audio_path=reference_audio,
            gpt_cond_len=gpt_cond_len,
            gpt_cond_chunk_len=gpt_cond_chunk_len,
            max_ref_length=max_ref_length
        )

        start_time = time.time()
        combined_audio = AudioSegment.empty()

        for sentence in sentences:
            out = model.inference(
                sentence,
                language,
                gpt_cond_latent,
                speaker_embedding,
                temperature=temperature,
                repetition_penalty=repetition_penalty,
            )
            audio_segment = AudioSegment(
                out["wav"].tobytes(),
                frame_rate=24000,
                sample_width=2,
                channels=1
            )
            combined_audio += audio_segment
            combined_audio += AudioSegment.silent(duration=500)  # 0.5 segundos de silencio

        inference_time = time.time() - start_time
        
        output_path = "output.wav"
        combined_audio.export(output_path, format="wav")

        audio_length = len(combined_audio) / 1000  # duración del audio en segundos
        real_time_factor = inference_time / audio_length

        metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
        metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"

        return output_path, metrics_text

    except Exception as e:
        print(f"Error detallado: {str(e)}")
        return None, f"Error: {str(e)}"

# Configuración de la interfaz de Gradio
supported_languages = ["es", "en"]
reference_audios = [
    "serio.wav",
    "neutral.wav",
    "alegre.wav",
]

theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="gray",
).set(
    body_background_fill='*neutral_100',
    body_background_fill_dark='*neutral_900',
)

description = """
# Sintetizador de voz de Pedro Labattaglia 🎙️

Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia. 

## Cómo usarlo:
- Elija el idioma (Español o Inglés)
- Elija un audio de referencia de la lista 
- Escriba el texto que desea sintetizar
- Presione generar voz
"""

# Interfaz de Gradio
with gr.Blocks(theme=theme) as demo:
    gr.Markdown(description)

    with gr.Row():
        gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg", label="", show_label=False, width=250, height=250)

    with gr.Row():
        with gr.Column(scale=2):
            language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
            reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
            input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
            generate_button = gr.Button("Generar voz", variant="primary")

        with gr.Column(scale=1):
            generated_audio = gr.Audio(label="Audio generado", interactive=False)
            metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")

    generate_button.click(
        predict,
        inputs=[input_text, language_selector, reference_audio],
        outputs=[generated_audio, metrics_output]
    )

if __name__ == "__main__":
    demo.launch()