Blakus's picture
Update app.py
cd24b6a verified
raw
history blame
7.19 kB
import os
import re
import time
import sys
import subprocess
import scipy.io.wavfile as wavfile
import torch
import torchaudio
import gradio as gr
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import hf_hub_download
# Configuración inicial
os.environ["COQUI_TOS_AGREED"] = "1"
def check_and_install(package):
try:
__import__(package)
except ImportError:
print(f"{package} no está instalado. Instalando...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
print("Descargando y configurando el modelo...")
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]
for file_name in files_to_download:
print(f"Descargando {file_name} de {repo_id}")
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")
config = XttsConfig()
config.load_json(config_path)
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=True)
model.cuda()
print("Modelo cargado en GPU")
def predict(prompt, language, reference_audio):
try:
if len(prompt) < 2 or len(prompt) > 600:
return None, "El texto debe tener entre 2 y 600 caracteres."
# Obtener los parámetros de la configuración JSON
temperature = config.model_args.get("temperature", 0.85)
length_penalty = config.model_args.get("length_penalty", 1.0)
repetition_penalty = config.model_args.get("repetition_penalty", 2.0)
top_k = config.model_args.get("top_k", 50)
top_p = config.model_args.get("top_p", 0.85)
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
audio_path=reference_audio
)
start_time = time.time()
out = model.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p
)
inference_time = time.time() - start_time
output_path = "pedro_labattaglia_TTS.wav"
# Guardar el audio directamente desde el output del modelo
wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
real_time_factor = inference_time / audio_length
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
return output_path, metrics_text
except Exception as e:
print(f"Error detallado: {str(e)}")
return None, f"Error: {str(e)}"
# Configuración de la interfaz de Gradio
supported_languages = ["es", "en"]
reference_audios = [
"serio.wav",
"neutral.wav",
"alegre.wav",
"neutral_ingles.wav"
]
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
).set(
body_background_fill='*neutral_100',
body_background_fill_dark='*neutral_900',
)
description = """
# Sintetizador de voz de Pedro Labattaglia 🎙️
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
## Cómo usarlo:
- Elija el idioma (Español o Inglés)
- Elija un audio de referencia de la lista
- Escriba el texto que desea sintetizar
- Presione generar voz
"""
# JavaScript mejorado para limpiar los datos de autenticación
clear_auth_js = """
function clearAuthData() {
localStorage.removeItem('gradio_auth_token');
localStorage.removeItem('gradio_auth_expiration');
sessionStorage.removeItem('gradio_auth_token');
sessionStorage.removeItem('gradio_auth_expiration');
document.cookie = 'gradio_auth_token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/;';
document.cookie = 'gradio_auth_expiration=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/;';
}
window.addEventListener('beforeunload', clearAuthData);
function logout() {
clearAuthData();
window.location.reload();
}
"""
# CSS personalizado
custom_css = """
#image-container img {
display: block;
margin-left: auto;
margin-right: auto;
max-width: 256px;
height: auto;
}
.logout-button {
position: fixed;
top: 10px;
right: 10px;
z-index: 1000;
padding: 8px 16px;
background-color: #f44336;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
.logout-button:hover {
background-color: #d32f2f;
}
.login-container {
background-color: white;
padding: 2rem;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
text-align: center;
max-width: 400px;
width: 100%;
}
.login-container h1 {
margin-bottom: 1rem;
color: #4a4a4a;
}
.login-container input {
width: 100%;
padding: 0.5rem;
margin-bottom: 1rem;
border: 1px solid #ddd;
border-radius: 4px;
}
.login-container button {
width: 100%;
padding: 0.5rem;
background-color: #3498db;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
.login-container button:hover {
background-color: #2980b9;
}
"""
# Modificar la parte del formulario de inicio de sesión
def custom_auth(username, password):
if (username, password) in [("Pedro Labattaglia", "PL2024"), ("Invitado", "PLTTS2024")]:
return True
return False
iface = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz..."),
gr.Dropdown(label="Idioma", choices=supported_languages),
gr.Dropdown(label="Audio de referencia", choices=reference_audios)
],
outputs=[
gr.Audio(label="Audio generado"),
gr.Textbox(label="Métricas")
],
title="Sintetizador de voz de Pedro Labattaglia",
description=description,
theme=theme,
css=custom_css,
allow_flagging="never"
)
# Crear una nueva interfaz para el inicio de sesión
login_iface = gr.Interface(
fn=custom_auth,
inputs=[
gr.Textbox(label="Usuario", placeholder="Ingrese su nombre de usuario"),
gr.Textbox(label="Contraseña", type="password", placeholder="Ingrese su contraseña")
],
outputs=gr.Textbox(visible=False),
title="Bienvenido al sintetizador de voz de Pedro Labattaglia",
description="Por favor, introduzca sus credenciales para acceder.",
theme=theme,
css=custom_css
)
# Combinar las interfaces
demo = gr.TabbedInterface([login_iface, iface], ["Login", "Sintetizador"])
if __name__ == "__main__":
demo.launch()