Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,6 @@ import scipy.io.wavfile as wavfile
|
|
7 |
import torch
|
8 |
import torchaudio
|
9 |
import gradio as gr
|
10 |
-
import numpy as np
|
11 |
-
import parselmouth
|
12 |
from TTS.api import TTS
|
13 |
from TTS.tts.configs.xtts_config import XttsConfig
|
14 |
from TTS.tts.models.xtts import Xtts
|
@@ -25,9 +23,6 @@ def check_and_install(package):
|
|
25 |
print(f"{package} no está instalado. Instalando...")
|
26 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
27 |
|
28 |
-
# Check and install parselmouth
|
29 |
-
check_and_install("parselmouth")
|
30 |
-
|
31 |
print("Descargando y configurando el modelo...")
|
32 |
repo_id = "Blakus/Pedro_Lab_XTTS"
|
33 |
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
|
@@ -52,22 +47,7 @@ model.cuda()
|
|
52 |
|
53 |
print("Modelo cargado en GPU")
|
54 |
|
55 |
-
def
|
56 |
-
sound = parselmouth.Sound(audio_path)
|
57 |
-
manipulation = parselmouth.praat.call(sound, "To Manipulation", 0.01, 75, 600)
|
58 |
-
|
59 |
-
pitch_tier = parselmouth.praat.call(manipulation, "Extract pitch tier")
|
60 |
-
|
61 |
-
parselmouth.praat.call(pitch_tier, "Multiply frequencies", sound.xmin, sound.xmax, pitch_factor)
|
62 |
-
|
63 |
-
parselmouth.praat.call([pitch_tier, manipulation], "Replace pitch tier")
|
64 |
-
new_sound = parselmouth.praat.call(manipulation, "Get resynthesis (overlap-add)")
|
65 |
-
|
66 |
-
output_path = "pitch_adjusted_output.wav"
|
67 |
-
new_sound.save(output_path, parselmouth.SoundFileFormat.WAV)
|
68 |
-
return output_path
|
69 |
-
|
70 |
-
def predict(prompt, language, reference_audio, speed, pitch_factor):
|
71 |
try:
|
72 |
if len(prompt) < 2 or len(prompt) > 600:
|
73 |
return None, "El texto debe tener entre 2 y 600 caracteres."
|
@@ -104,12 +84,9 @@ def predict(prompt, language, reference_audio, speed, pitch_factor):
|
|
104 |
|
105 |
output_path = "pedro_labattaglia_TTS.wav"
|
106 |
# Guardar el audio directamente desde el output del modelo
|
|
|
107 |
wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
|
108 |
|
109 |
-
# Adjust pitch
|
110 |
-
if pitch_factor != 1.0:
|
111 |
-
output_path = adjust_pitch(output_path, pitch_factor)
|
112 |
-
|
113 |
audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
|
114 |
real_time_factor = inference_time / audio_length
|
115 |
|
@@ -146,7 +123,6 @@ Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
|
|
146 |
- Elija el idioma (Español o Inglés)
|
147 |
- Elija un audio de referencia de la lista
|
148 |
- Ajuste la velocidad del habla si lo desea
|
149 |
-
- Ajuste el pitch de la voz si lo desea
|
150 |
- Escriba el texto que desea sintetizar
|
151 |
- Presione generar voz
|
152 |
"""
|
@@ -166,13 +142,12 @@ with gr.Blocks(theme=theme) as demo:
|
|
166 |
elem_id="image-container"
|
167 |
)
|
168 |
|
169 |
-
# Fila para seleccionar idioma, referencia, velocidad
|
170 |
with gr.Row():
|
171 |
with gr.Column(scale=2):
|
172 |
language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
|
173 |
reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
|
174 |
speed_slider = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Velocidad del habla")
|
175 |
-
pitch_slider = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Ajuste de pitch")
|
176 |
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
|
177 |
generate_button = gr.Button("Generar voz", variant="primary")
|
178 |
|
@@ -183,7 +158,7 @@ with gr.Blocks(theme=theme) as demo:
|
|
183 |
# Configuración del botón para generar voz
|
184 |
generate_button.click(
|
185 |
predict,
|
186 |
-
inputs=[input_text, language_selector, reference_audio, speed_slider
|
187 |
outputs=[generated_audio, metrics_output]
|
188 |
)
|
189 |
|
|
|
7 |
import torch
|
8 |
import torchaudio
|
9 |
import gradio as gr
|
|
|
|
|
10 |
from TTS.api import TTS
|
11 |
from TTS.tts.configs.xtts_config import XttsConfig
|
12 |
from TTS.tts.models.xtts import Xtts
|
|
|
23 |
print(f"{package} no está instalado. Instalando...")
|
24 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
25 |
|
|
|
|
|
|
|
26 |
print("Descargando y configurando el modelo...")
|
27 |
repo_id = "Blakus/Pedro_Lab_XTTS"
|
28 |
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
|
|
|
47 |
|
48 |
print("Modelo cargado en GPU")
|
49 |
|
50 |
+
def predict(prompt, language, reference_audio, speed):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
try:
|
52 |
if len(prompt) < 2 or len(prompt) > 600:
|
53 |
return None, "El texto debe tener entre 2 y 600 caracteres."
|
|
|
84 |
|
85 |
output_path = "pedro_labattaglia_TTS.wav"
|
86 |
# Guardar el audio directamente desde el output del modelo
|
87 |
+
import scipy.io.wavfile as wavfile
|
88 |
wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
|
89 |
|
|
|
|
|
|
|
|
|
90 |
audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
|
91 |
real_time_factor = inference_time / audio_length
|
92 |
|
|
|
123 |
- Elija el idioma (Español o Inglés)
|
124 |
- Elija un audio de referencia de la lista
|
125 |
- Ajuste la velocidad del habla si lo desea
|
|
|
126 |
- Escriba el texto que desea sintetizar
|
127 |
- Presione generar voz
|
128 |
"""
|
|
|
142 |
elem_id="image-container"
|
143 |
)
|
144 |
|
145 |
+
# Fila para seleccionar idioma, referencia, velocidad y generar voz
|
146 |
with gr.Row():
|
147 |
with gr.Column(scale=2):
|
148 |
language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
|
149 |
reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
|
150 |
speed_slider = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Velocidad del habla")
|
|
|
151 |
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
|
152 |
generate_button = gr.Button("Generar voz", variant="primary")
|
153 |
|
|
|
158 |
# Configuración del botón para generar voz
|
159 |
generate_button.click(
|
160 |
predict,
|
161 |
+
inputs=[input_text, language_selector, reference_audio, speed_slider],
|
162 |
outputs=[generated_audio, metrics_output]
|
163 |
)
|
164 |
|