Blakus commited on
Commit
8f0bc36
·
verified ·
1 Parent(s): 46571d4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -128
app.py CHANGED
@@ -1,64 +1,52 @@
1
- import os
2
- import re
3
- import time
4
  import sys
 
5
  import subprocess
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  import gradio as gr
 
7
  from pydub import AudioSegment
 
8
  from TTS.api import TTS
9
  from TTS.tts.configs.xtts_config import XttsConfig
10
  from TTS.tts.models.xtts import Xtts
11
  from TTS.utils.generic_utils import get_user_data_dir
12
- from huggingface_hub import hf_hub_download
13
 
14
- # Configuración inicial
15
- os.environ["COQUI_TOS_AGREED"] = "1"
16
 
17
- def check_and_install(package):
18
- try:
19
- __import__(package)
20
- except ImportError:
21
- print(f"{package} no está instalado. Instalando...")
22
- subprocess.check_call([sys.executable, "-m", "pip", "install", package])
23
-
24
- def setup_mecab_and_unidic():
25
- check_and_install("MeCab")
26
- check_and_install("unidic-lite")
27
-
28
- try:
29
- import unidic
30
- mecab_dic_dir = unidic.DICDIR
31
- os.environ['MECABRC'] = os.path.join(mecab_dic_dir, 'mecabrc')
32
- print(f"MECABRC configurado en: {os.environ['MECABRC']}")
33
-
34
- # Intentar descargar UniDic si es necesario
35
- subprocess.check_call([sys.executable, '-m', 'unidic', 'download'])
36
- print("UniDic descargado correctamente")
37
-
38
- # Prueba de MeCab
39
- import MeCab
40
- tagger = MeCab.Tagger()
41
- result = tagger.parse("これはテストです。")
42
- print("Prueba de MeCab exitosa. Salida:")
43
- print(result)
44
- except Exception as e:
45
- print(f"Error durante la configuración de MeCab/UniDic: {e}")
46
- raise
47
-
48
- print("Configurando MeCab y UniDic...")
49
- setup_mecab_and_unidic()
50
 
51
- # Descargar y configurar el modelo
52
- print("Descargando y configurando el modelo...")
53
  repo_id = "Blakus/Pedro_Lab_XTTS"
54
  local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
55
  os.makedirs(local_dir, exist_ok=True)
56
  files_to_download = ["config.json", "model.pth", "vocab.json"]
57
-
58
  for file_name in files_to_download:
59
- print(f"Descargando {file_name} de {repo_id}")
 
60
  hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
61
 
 
62
  config_path = os.path.join(local_dir, "config.json")
63
  checkpoint_path = os.path.join(local_dir, "model.pth")
64
  vocab_path = os.path.join(local_dir, "vocab.json")
@@ -71,119 +59,90 @@ model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_
71
 
72
  print("Modelo cargado en CPU")
73
 
74
- # Funciones auxiliares
75
- def split_text(text):
76
- return re.split(r'(?<=[.!?])\s+', text)
 
 
77
 
78
- def predict(prompt, language, reference_audio):
 
79
  try:
80
- if len(prompt) < 2 or len(prompt) > 600:
81
- return None, "El texto debe tener entre 2 y 600 caracteres."
 
 
82
 
83
- sentences = split_text(prompt)
 
84
 
85
- temperature = config.inference.get("temperature", 0.75)
86
- repetition_penalty = config.inference.get("repetition_penalty", 5.0)
87
- gpt_cond_len = config.inference.get("gpt_cond_len", 30)
88
- gpt_cond_chunk_len = config.inference.get("gpt_cond_chunk_len", 4)
89
- max_ref_length = config.inference.get("max_ref_length", 60)
 
90
 
91
  gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
92
- audio_path=reference_audio,
93
  gpt_cond_len=gpt_cond_len,
94
  gpt_cond_chunk_len=gpt_cond_chunk_len,
95
  max_ref_length=max_ref_length
96
  )
97
 
 
98
  start_time = time.time()
99
- combined_audio = AudioSegment.empty()
100
-
101
- for sentence in sentences:
102
- out = model.inference(
103
- sentence,
104
- language,
105
- gpt_cond_latent,
106
- speaker_embedding,
107
- temperature=temperature,
108
- repetition_penalty=repetition_penalty,
109
- )
110
- audio_segment = AudioSegment(
111
- out["wav"].tobytes(),
112
- frame_rate=24000,
113
- sample_width=2,
114
- channels=1
115
- )
116
- combined_audio += audio_segment
117
- combined_audio += AudioSegment.silent(duration=500) # 0.5 segundos de silencio
118
-
119
  inference_time = time.time() - start_time
120
 
121
- output_path = "output.wav"
122
- combined_audio.export(output_path, format="wav")
123
 
124
- audio_length = len(combined_audio) / 1000 # duración del audio en segundos
 
125
  real_time_factor = inference_time / audio_length
126
 
127
  metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
128
  metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
129
 
130
- return output_path, metrics_text
131
 
132
  except Exception as e:
133
  print(f"Error detallado: {str(e)}")
134
- return None, f"Error: {str(e)}"
135
-
136
- # Configuración de la interfaz de Gradio
137
- supported_languages = ["es", "en"]
138
- reference_audios = [
139
- "serio.wav",
140
- "neutral.wav",
141
- "alegre.wav",
142
- ]
143
-
144
- theme = gr.themes.Soft(
145
- primary_hue="blue",
146
- secondary_hue="gray",
147
- ).set(
148
- body_background_fill='*neutral_100',
149
- body_background_fill_dark='*neutral_900',
150
- )
151
-
152
- description = """
153
- # Sintetizador de voz de Pedro Labattaglia 🎙️
154
-
155
- Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
156
-
157
- ## Cómo usarlo:
158
- - Elija el idioma (Español o Inglés)
159
- - Elija un audio de referencia de la lista
160
- - Escriba el texto que desea sintetizar
161
- - Presione generar voz
162
- """
163
-
164
- # Interfaz de Gradio
165
- with gr.Blocks(theme=theme) as demo:
166
- gr.Markdown(description)
167
 
168
- with gr.Row():
169
- gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg", label="", show_label=False, width=250, height=250)
170
 
 
 
 
 
171
  with gr.Row():
172
- with gr.Column(scale=2):
173
- language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
174
- reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
175
  input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
176
- generate_button = gr.Button("Generar voz", variant="primary")
177
-
178
- with gr.Column(scale=1):
179
- generated_audio = gr.Audio(label="Audio generado", interactive=False)
180
- metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")
181
-
 
 
 
 
 
 
 
 
182
  generate_button.click(
183
  predict,
184
- inputs=[input_text, language_selector, reference_audio],
185
- outputs=[generated_audio, metrics_output]
186
  )
187
 
188
- if __name__ == "__main__":
189
- demo.launch()
 
 
 
 
1
  import sys
2
+ import io, os, stat
3
  import subprocess
4
+ import random
5
+ from zipfile import ZipFile
6
+ import uuid
7
+ import time
8
+ import torch
9
+ import torchaudio
10
+ import time
11
+ # Mantenemos la descarga de MeCab
12
+ os.system('python -m unidic download')
13
+
14
+ # Mantenemos el acuerdo de CPML
15
+ os.environ["COQUI_TOS_AGREED"] = "1"
16
+
17
+ import langid
18
+ import base64
19
+ import csv
20
+ from io import StringIO
21
+ import datetime
22
+ import re
23
+
24
  import gradio as gr
25
+ from scipy.io.wavfile import write
26
  from pydub import AudioSegment
27
+
28
  from TTS.api import TTS
29
  from TTS.tts.configs.xtts_config import XttsConfig
30
  from TTS.tts.models.xtts import Xtts
31
  from TTS.utils.generic_utils import get_user_data_dir
 
32
 
33
+ HF_TOKEN = os.environ.get("HF_TOKEN")
 
34
 
35
+ from huggingface_hub import hf_hub_download
36
+ import os
37
+ from TTS.utils.manage import get_user_data_dir
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
+ # Mantenemos la autenticación y descarga del modelo
 
40
  repo_id = "Blakus/Pedro_Lab_XTTS"
41
  local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
42
  os.makedirs(local_dir, exist_ok=True)
43
  files_to_download = ["config.json", "model.pth", "vocab.json"]
 
44
  for file_name in files_to_download:
45
+ print(f"Downloading {file_name} from {repo_id}")
46
+ local_file_path = os.path.join(local_dir, file_name)
47
  hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
48
 
49
+ # Cargamos configuración y modelo
50
  config_path = os.path.join(local_dir, "config.json")
51
  checkpoint_path = os.path.join(local_dir, "model.pth")
52
  vocab_path = os.path.join(local_dir, "vocab.json")
 
59
 
60
  print("Modelo cargado en CPU")
61
 
62
+ # Mantenemos variables globales y funciones auxiliares
63
+ DEVICE_ASSERT_DETECTED = 0
64
+ DEVICE_ASSERT_PROMPT = None
65
+ DEVICE_ASSERT_LANG = None
66
+ supported_languages = config.languages
67
 
68
+ # Función de inferencia usando parámetros predeterminados del archivo de configuración
69
+ def predict(prompt, language, audio_file_pth, mic_file_path, use_mic):
70
  try:
71
+ if use_mic:
72
+ speaker_wav = mic_file_path
73
+ else:
74
+ speaker_wav = audio_file_pth
75
 
76
+ if len(prompt) < 2 or len(prompt) > 200:
77
+ return None, None, "El texto debe tener entre 2 y 200 caracteres."
78
 
79
+ # Usamos los valores de la configuración directamente
80
+ temperature = getattr(config, "temperature", 0.75)
81
+ repetition_penalty = getattr(config, "repetition_penalty", 5.0)
82
+ gpt_cond_len = getattr(config, "gpt_cond_len", 30)
83
+ gpt_cond_chunk_len = getattr(config, "gpt_cond_chunk_len", 4)
84
+ max_ref_length = getattr(config, "max_ref_len", 60)
85
 
86
  gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
87
+ audio_path=speaker_wav,
88
  gpt_cond_len=gpt_cond_len,
89
  gpt_cond_chunk_len=gpt_cond_chunk_len,
90
  max_ref_length=max_ref_length
91
  )
92
 
93
+ # Medimos el tiempo de inferencia manualmente
94
  start_time = time.time()
95
+ out = model.inference(
96
+ prompt,
97
+ language,
98
+ gpt_cond_latent,
99
+ speaker_embedding,
100
+ temperature=temperature,
101
+ repetition_penalty=repetition_penalty,
102
+ )
 
 
 
 
 
 
 
 
 
 
 
 
103
  inference_time = time.time() - start_time
104
 
105
+ torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
 
106
 
107
+ # Calculamos las métricas usando el tiempo medido manualmente
108
+ audio_length = len(out["wav"]) / 24000 # duración del audio en segundos
109
  real_time_factor = inference_time / audio_length
110
 
111
  metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
112
  metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
113
 
114
+ return gr.make_waveform("output.wav"), "output.wav", metrics_text
115
 
116
  except Exception as e:
117
  print(f"Error detallado: {str(e)}")
118
+ return None, None, f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
 
 
120
 
121
+ # Interfaz de Gradio actualizada sin sliders
122
+ with gr.Blocks(theme=gr.themes.Base()) as demo:
123
+ gr.Markdown("# Sintetizador de Voz XTTS")
124
+
125
  with gr.Row():
126
+ with gr.Column():
 
 
127
  input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
128
+ language = gr.Dropdown(label="Idioma", choices=supported_languages, value="es")
129
+ audio_file = gr.Audio(label="Audio de referencia", type="filepath")
130
+ use_mic = gr.Checkbox(label="Usar micrófono")
131
+ mic_file = gr.Audio(label="Grabar con micrófono", source="microphone", type="filepath", visible=False)
132
+
133
+ use_mic.change(fn=lambda x: gr.update(visible=x), inputs=[use_mic], outputs=[mic_file])
134
+
135
+ generate_button = gr.Button("Generar voz")
136
+
137
+ with gr.Column():
138
+ output_audio = gr.Audio(label="Audio generado")
139
+ waveform = gr.Image(label="Forma de onda")
140
+ metrics = gr.Textbox(label="Métricas")
141
+
142
  generate_button.click(
143
  predict,
144
+ inputs=[input_text, language, audio_file, mic_file, use_mic],
145
+ outputs=[waveform, output_audio, metrics]
146
  )
147
 
148
+ demo.launch(debug=True)