Blakus commited on
Commit
ab4d778
·
verified ·
1 Parent(s): df0da2c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -2
app.py CHANGED
@@ -1,6 +1,101 @@
1
  import os
 
 
 
 
 
 
 
2
  import gradio as gr
3
- os.getenv("app_backend")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  # Configuración de la interfaz de Gradio
5
  supported_languages = ["es", "en"]
6
  reference_audios = [
@@ -76,4 +171,4 @@ demo.css = """
76
  """
77
 
78
  if __name__ == "__main__":
79
- demo.launch(share=True)
 
1
  import os
2
+ import re
3
+ import time
4
+ import sys
5
+ import subprocess
6
+ import scipy.io.wavfile as wavfile
7
+ import torch
8
+ import torchaudio
9
  import gradio as gr
10
+ from TTS.api import TTS
11
+ from TTS.tts.configs.xtts_config import XttsConfig
12
+ from TTS.tts.models.xtts import Xtts
13
+ from TTS.utils.generic_utils import get_user_data_dir
14
+ from huggingface_hub import hf_hub_download
15
+
16
+ # Configuración inicial
17
+ os.environ["COQUI_TOS_AGREED"] = "1"
18
+
19
+ def check_and_install(package):
20
+ try:
21
+ __import__(package)
22
+ except ImportError:
23
+ print(f"{package} no está instalado. Instalando...")
24
+ subprocess.check_call([sys.executable, "-m", "pip", "install", package])
25
+
26
+ print("Descargando y configurando el modelo...")
27
+ repo_id = "Blakus/Pedro_Lab_XTTS"
28
+ local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
29
+ os.makedirs(local_dir, exist_ok=True)
30
+ files_to_download = ["config.json", "model.pth", "vocab.json"]
31
+
32
+ for file_name in files_to_download:
33
+ print(f"Descargando {file_name} de {repo_id}")
34
+ hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
35
+
36
+ config_path = os.path.join(local_dir, "config.json")
37
+ checkpoint_path = os.path.join(local_dir, "model.pth")
38
+ vocab_path = os.path.join(local_dir, "vocab.json")
39
+
40
+ config = XttsConfig()
41
+ config.load_json(config_path)
42
+
43
+ model = Xtts.init_from_config(config)
44
+ model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=True)
45
+
46
+ model.cuda()
47
+
48
+ print("Modelo cargado en GPU")
49
+
50
+ def predict(prompt, language, reference_audio):
51
+ try:
52
+ if len(prompt) < 2 or len(prompt) > 600:
53
+ return None, "El texto debe tener entre 2 y 600 caracteres."
54
+
55
+ # Obtener los parámetros de la configuración JSON
56
+ temperature = config.model_args.get("temperature", 0.85)
57
+ length_penalty = config.model_args.get("length_penalty", 1.0)
58
+ repetition_penalty = config.model_args.get("repetition_penalty", 2.0)
59
+ top_k = config.model_args.get("top_k", 50)
60
+ top_p = config.model_args.get("top_p", 0.85)
61
+
62
+ gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
63
+ audio_path=reference_audio
64
+ )
65
+
66
+ start_time = time.time()
67
+
68
+ out = model.inference(
69
+ prompt,
70
+ language,
71
+ gpt_cond_latent,
72
+ speaker_embedding,
73
+ temperature=temperature,
74
+ length_penalty=length_penalty,
75
+ repetition_penalty=repetition_penalty,
76
+ top_k=top_k,
77
+ top_p=top_p
78
+ )
79
+
80
+ inference_time = time.time() - start_time
81
+
82
+ output_path = "pedro_labattaglia_TTS.wav"
83
+ # Guardar el audio directamente desde el output del modelo
84
+ import scipy.io.wavfile as wavfile
85
+ wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
86
+
87
+ audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
88
+ real_time_factor = inference_time / audio_length
89
+
90
+ metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
91
+ metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
92
+
93
+ return output_path, metrics_text
94
+
95
+ except Exception as e:
96
+ print(f"Error detallado: {str(e)}")
97
+ return None, f"Error: {str(e)}"
98
+
99
  # Configuración de la interfaz de Gradio
100
  supported_languages = ["es", "en"]
101
  reference_audios = [
 
171
  """
172
 
173
  if __name__ == "__main__":
174
+ demo.launch(auth=[("Pedro Labattaglia", "PL2024"), ("Invitado", "Qwerty2024")])