import os import re import time import sys import subprocess import scipy.io.wavfile as wavfile import torch import torchaudio import gradio as gr from TTS.api import TTS from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts from TTS.utils.generic_utils import get_user_data_dir from huggingface_hub import hf_hub_download # Configuración inicial os.environ["COQUI_TOS_AGREED"] = "1" def check_and_install(package): try: __import__(package) except ImportError: print(f"{package} no está instalado. Instalando...") subprocess.check_call([sys.executable, "-m", "pip", "install", package]) print("Descargando y configurando el modelo...") repo_id = "Blakus/Pedro_Lab_XTTS" local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2") os.makedirs(local_dir, exist_ok=True) files_to_download = ["config.json", "model.pth", "vocab.json"] for file_name in files_to_download: print(f"Descargando {file_name} de {repo_id}") hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir) config_path = os.path.join(local_dir, "config.json") checkpoint_path = os.path.join(local_dir, "model.pth") vocab_path = os.path.join(local_dir, "vocab.json") config = XttsConfig() config.load_json(config_path) model = Xtts.init_from_config(config) model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=True) model.cuda() print("Modelo cargado en GPU") def predict(prompt, language, reference_audio): try: if len(prompt) < 2 or len(prompt) > 600: return None, "El texto debe tener entre 2 y 600 caracteres." # Obtener los parámetros de la configuración JSON temperature = config.model_args.get("temperature", 0.85) length_penalty = config.model_args.get("length_penalty", 1.0) repetition_penalty = config.model_args.get("repetition_penalty", 2.0) top_k = config.model_args.get("top_k", 50) top_p = config.model_args.get("top_p", 0.85) gpt_cond_latent, speaker_embedding = model.get_conditioning_latents( audio_path=reference_audio ) start_time = time.time() out = model.inference( prompt, language, gpt_cond_latent, speaker_embedding, temperature=temperature, length_penalty=length_penalty, repetition_penalty=repetition_penalty, top_k=top_k, top_p=top_p ) inference_time = time.time() - start_time output_path = "pedro_labattaglia_TTS.wav" # Guardar el audio directamente desde el output del modelo wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"]) audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos real_time_factor = inference_time / audio_length metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n" metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}" return output_path, metrics_text except Exception as e: print(f"Error detallado: {str(e)}") return None, f"Error: {str(e)}" # Configuración de la interfaz de Gradio supported_languages = ["es", "en"] reference_audios = [ "serio.wav", "neutral.wav", "alegre.wav", "neutral_ingles.wav" ] theme = gr.themes.Soft( primary_hue="blue", secondary_hue="gray", ).set( body_background_fill='*neutral_100', body_background_fill_dark='*neutral_900', ) description = """ # Sintetizador de voz de Pedro Labattaglia 🎙️ Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia. ## Cómo usarlo: - Elija el idioma (Español o Inglés) - Elija un audio de referencia de la lista - Escriba el texto que desea sintetizar - Presione generar voz """ # JavaScript mejorado para limpiar los datos de autenticación clear_auth_js = """ function clearAuthData() { localStorage.removeItem('gradio_auth_token'); localStorage.removeItem('gradio_auth_expiration'); sessionStorage.removeItem('gradio_auth_token'); sessionStorage.removeItem('gradio_auth_expiration'); document.cookie = 'gradio_auth_token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/;'; document.cookie = 'gradio_auth_expiration=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/;'; } window.addEventListener('beforeunload', clearAuthData); function logout() { clearAuthData(); window.location.reload(); } """ # CSS personalizado custom_css = """ #image-container img { display: block; margin-left: auto; margin-right: auto; max-width: 256px; height: auto; } .logout-button { position: fixed; top: 10px; right: 10px; z-index: 1000; padding: 8px 16px; background-color: #f44336; color: white; border: none; border-radius: 4px; cursor: pointer; } .logout-button:hover { background-color: #d32f2f; } .login-container { background-color: white; padding: 2rem; border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); text-align: center; max-width: 400px; width: 100%; } .login-container h1 { margin-bottom: 1rem; color: #4a4a4a; } .login-container input { width: 100%; padding: 0.5rem; margin-bottom: 1rem; border: 1px solid #ddd; border-radius: 4px; } .login-container button { width: 100%; padding: 0.5rem; background-color: #3498db; color: white; border: none; border-radius: 4px; cursor: pointer; } .login-container button:hover { background-color: #2980b9; } """ # Modificar la parte del formulario de inicio de sesión def custom_auth(username, password): if (username, password) in [("Pedro Labattaglia", "PL2024"), ("Invitado", "PLTTS2024")]: return True return False iface = gr.Interface( fn=predict, inputs=[ gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz..."), gr.Dropdown(label="Idioma", choices=supported_languages), gr.Dropdown(label="Audio de referencia", choices=reference_audios) ], outputs=[ gr.Audio(label="Audio generado"), gr.Textbox(label="Métricas") ], title="Sintetizador de voz de Pedro Labattaglia", description=description, theme=theme, css=custom_css, allow_flagging="never" ) # Crear una nueva interfaz para el inicio de sesión login_iface = gr.Interface( fn=custom_auth, inputs=[ gr.Textbox(label="Usuario", placeholder="Ingrese su nombre de usuario"), gr.Textbox(label="Contraseña", type="password", placeholder="Ingrese su contraseña") ], outputs=gr.Textbox(visible=False), title="Bienvenido al sintetizador de voz de Pedro Labattaglia", description="Por favor, introduzca sus credenciales para acceder.", theme=theme, css=custom_css ) # Combinar las interfaces demo = gr.TabbedInterface([login_iface, iface], ["Login", "Sintetizador"]) if __name__ == "__main__": demo.launch()