Spaces:
Running
on
T4
Running
on
T4
File size: 4,892 Bytes
f714b01 fcdf9f0 1d5e556 a528e66 a71493c 1d5e556 f714b01 1d5e556 f714b01 1d5e556 3bcbfb1 f714b01 3bcbfb1 f714b01 c4f1727 2f0f296 1d60034 78953d9 2f0f296 fe5759e 78953d9 c4f1727 f714b01 c4f1727 f714b01 2f0f296 3bcbfb1 771e656 2f0f296 f714b01 758d8b0 1bf54a5 c4f1727 f714b01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
import os, gc, torch
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1024
title = "RWKV-4-Raven-7B-v9-Eng99%-Other1%-20230412-ctx8192"
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "20B_tokenizer.json")
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Input:
{input}
# Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Response:
"""
def evaluate(
instruction,
input=None,
token_count=200,
temperature=1.0,
top_p=0.7,
presencePenalty = 0.1,
countPenalty = 0.1,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
instruction = instruction.strip()
input = input.strip()
ctx = generate_prompt(instruction, input)
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gc.collect()
torch.cuda.empty_cache()
yield out_str.strip()
examples = [
["Tell me about ravens.", "", 150, 1.0, 0.5, 0.4, 0.4],
["Write a python function to mine 1 BTC, with details and comments.", "", 150, 1.0, 0.5, 0.2, 0.2],
["Write a song about ravens.", "", 150, 1.0, 0.5, 0.4, 0.4],
["Explain the following metaphor: Life is like cats.", "", 150, 1.0, 0.5, 0.4, 0.4],
["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.0, 0.5, 0.4, 0.4],
["Generate a list of adjectives that describe a person as brave.", "", 150, 1.0, 0.5, 0.4, 0.4],
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 150, 1.0, 0.5, 0.4, 0.4],
]
g = gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(lines=2, label="Instruction", value="Tell me about ravens."),
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
gr.components.Slider(minimum=10, maximum=200, step=10, value=150), # token_count
gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0), # temperature
gr.components.Slider(minimum=0, maximum=1, step=0.05, value=0.5), # top_p
gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # presencePenalty
gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # countPenalty
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
],
title=f"🐦Raven - {title}",
description="Raven is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) finetuned to follow instructions. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen 1024. It is finetuned on [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), codealpaca and more. For best results, *** keep you prompt short and clear ***.",
examples=examples,
cache_examples=False,
)
g.queue(concurrency_count=1, max_size=10)
g.launch(share=False)
|