from torch import nn class CNN(nn.Module): def __init__(self, num_classes): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.bn1 = nn.BatchNorm2d(32) self.bn2 = nn.BatchNorm2d(64) self.bn3 = nn.BatchNorm2d(128) self.fc1 = nn.Linear(128 * 16 * 16, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 128) self.fc4 = nn.Linear(128 ,num_classes) self.dropout = nn.Dropout(0.5) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = self.bn1(x) x = self.pool(x) x = nn.functional.relu(self.conv2(x)) x = self.bn2(x) x = self.pool(x) x = nn.functional.relu(self.conv3(x)) x = self.bn3(x) x = self.pool(x) x = x.view(-1, 128 * 16 * 16) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.dropout(x) x = nn.functional.relu(self.fc3(x)) x = self.dropout(x) x = self.fc4(x) return x