Spaces:
Running
Running
import math | |
import torch | |
import torch.nn as nn | |
from einops import rearrange, repeat | |
from ..utils.helpers import to_2tuple | |
class PatchEmbed(nn.Module): | |
"""2D Image to Patch Embedding | |
Image to Patch Embedding using Conv2d | |
A convolution based approach to patchifying a 2D image w/ embedding projection. | |
Based on the impl in https://github.com/google-research/vision_transformer | |
Hacked together by / Copyright 2020 Ross Wightman | |
Remove the _assert function in forward function to be compatible with multi-resolution images. | |
""" | |
def __init__( | |
self, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
norm_layer=None, | |
flatten=True, | |
bias=True, | |
dtype=None, | |
device=None, | |
): | |
factory_kwargs = {"dtype": dtype, "device": device} | |
super().__init__() | |
patch_size = to_2tuple(patch_size) | |
self.patch_size = patch_size | |
self.flatten = flatten | |
self.proj = nn.Conv3d( | |
in_chans, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=bias, | |
**factory_kwargs | |
) | |
nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1)) | |
if bias: | |
nn.init.zeros_(self.proj.bias) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
x = self.proj(x) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
x = self.norm(x) | |
return x | |
class TextProjection(nn.Module): | |
""" | |
Projects text embeddings. Also handles dropout for classifier-free guidance. | |
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py | |
""" | |
def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None): | |
factory_kwargs = {"dtype": dtype, "device": device} | |
super().__init__() | |
self.linear_1 = nn.Linear( | |
in_features=in_channels, | |
out_features=hidden_size, | |
bias=True, | |
**factory_kwargs | |
) | |
self.act_1 = act_layer() | |
self.linear_2 = nn.Linear( | |
in_features=hidden_size, | |
out_features=hidden_size, | |
bias=True, | |
**factory_kwargs | |
) | |
def forward(self, caption): | |
hidden_states = self.linear_1(caption) | |
hidden_states = self.act_1(hidden_states) | |
hidden_states = self.linear_2(hidden_states) | |
return hidden_states | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
Args: | |
t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional. | |
dim (int): the dimension of the output. | |
max_period (int): controls the minimum frequency of the embeddings. | |
Returns: | |
embedding (torch.Tensor): An (N, D) Tensor of positional embeddings. | |
.. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
""" | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__( | |
self, | |
hidden_size, | |
act_layer, | |
frequency_embedding_size=256, | |
max_period=10000, | |
out_size=None, | |
dtype=None, | |
device=None, | |
): | |
factory_kwargs = {"dtype": dtype, "device": device} | |
super().__init__() | |
self.frequency_embedding_size = frequency_embedding_size | |
self.max_period = max_period | |
if out_size is None: | |
out_size = hidden_size | |
self.mlp = nn.Sequential( | |
nn.Linear( | |
frequency_embedding_size, hidden_size, bias=True, **factory_kwargs | |
), | |
act_layer(), | |
nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs), | |
) | |
nn.init.normal_(self.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.mlp[2].weight, std=0.02) | |
def forward(self, t): | |
t_freq = timestep_embedding( | |
t, self.frequency_embedding_size, self.max_period | |
).type(self.mlp[0].weight.dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |