CLIP-Guess-the-Image / clip_chat.py
Boni98's picture
Update clip_chat.py
c496b51
import torch
import clip
from PIL import Image
import glob
import os
from random import choice
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-L/14@336px", device=device)
COCO = glob.glob(os.path.join(os.getcwd(), "images", "*"))
available_models = ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px']
def load_random_image():
image_path = choice(COCO)
image = Image.open(image_path)
return image
def next_image():
global image_org, image
image_org = load_random_image()
image = preprocess(Image.fromarray(image_org)).unsqueeze(0).to(device)
# def calculate_logits(image, text):
# return model(image, text)[0]
def calculate_logits(image_features, text_features):
image_features = image_features / image_features.norm(dim=1, keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
logit_scale = model.logit_scale.exp()
return logit_scale * image_features @ text_features.t()
last = -1
best = -1
goal = 23
image_org = load_random_image()
image = preprocess(image_org).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
def answer(message):
global last, best
text = clip.tokenize([message]).to(device)
with torch.no_grad():
text_features = model.encode_text(text)
# logits_per_image, _ = model(image, text)
logits = calculate_logits(image_features, text_features).cpu().numpy().flatten()[0]
# logits = calculate_logits(image, text)
if last == -1:
is_better = -1
elif last > logits:
is_better = 0
elif last < logits:
is_better = 1
elif logits > goal:
is_better = 2
else:
is_better = -1
last = logits
if logits > best:
best = logits
is_better = 3
return logits, is_better
def reset_everything():
global last, best, goal, image, image_org
last = -1
best = -1
goal = 23
image_org = load_random_image()
image = preprocess(image_org).unsqueeze(0).to(device)