File size: 10,155 Bytes
d8d694f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""extract feature and search with user query."""

import os
import time

import numpy as np
import yaml
from BCEmbedding.tools.langchain import BCERerank
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.retrievers import ContextualCompressionRetriever
from langchain.vectorstores.faiss import FAISS as Vectorstore
from langchain_community.vectorstores.utils import DistanceStrategy
from loguru import logger
from modelscope import snapshot_download
from sklearn.metrics import precision_recall_curve

from utils.web_configs import WEB_CONFIGS

try:
    from utils.rag.file_operation import FileOperation
except:
    # 用于 DEBUG
    from file_operation import FileOperation


class Retriever:
    """Tokenize and extract features from the project's documents, for use in
    the reject pipeline and response pipeline."""

    def __init__(self, embeddings, reranker, work_dir: str, reject_throttle: float) -> None:
        """Init with model device type and config."""
        self.reject_throttle = reject_throttle
        self.rejecter = Vectorstore.load_local(
            os.path.join(work_dir, "db_reject"), embeddings=embeddings, allow_dangerous_deserialization=True
        )
        self.retriever = Vectorstore.load_local(
            os.path.join(work_dir, "db_response"),
            embeddings=embeddings,
            allow_dangerous_deserialization=True,
            distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT,
        ).as_retriever(search_type="similarity", search_kwargs={"score_threshold": 0.15, "k": 30})
        self.compression_retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=self.retriever)

    def is_reject(self, question, k=30, disable_throttle=False):
        """If no search results below the threshold can be found from the
        database, reject this query."""
        if disable_throttle:
            # for searching throttle during update sample
            docs_with_score = self.rejecter.similarity_search_with_relevance_scores(question, k=1)
            if len(docs_with_score) < 1:
                return True, docs_with_score
            return False, docs_with_score
        else:
            # for retrieve result
            # if no chunk passed the throttle, give the max
            docs_with_score = self.rejecter.similarity_search_with_relevance_scores(question, k=k)
            ret = []
            max_score = -1
            top1 = None
            for doc, score in docs_with_score:
                if score >= self.reject_throttle:
                    ret.append(doc)
                if score > max_score:
                    max_score = score
                    top1 = (doc, score)
            reject = False if len(ret) > 0 else True
            return reject, [top1]

    def update_throttle(self, config_path: str = "config.yaml", good_questions=[], bad_questions=[]):
        """Update reject throttle based on positive and negative examples."""

        if len(good_questions) == 0 or len(bad_questions) == 0:
            raise Exception("good and bad question examples cat not be empty.")
        questions = good_questions + bad_questions
        predictions = []
        for question in questions:
            self.reject_throttle = -1
            _, docs = self.is_reject(question=question, disable_throttle=True)
            score = docs[0][1]
            predictions.append(max(0, score))

        labels = [1 for _ in range(len(good_questions))] + [0 for _ in range(len(bad_questions))]
        precision, recall, thresholds = precision_recall_curve(labels, predictions)

        # get the best index for sum(precision, recall)
        sum_precision_recall = precision[:-1] + recall[:-1]
        index_max = np.argmax(sum_precision_recall)
        optimal_threshold = max(thresholds[index_max], 0.0)

        with open(config_path, "r", encoding="utf-8") as f:
            config = yaml.safe_load(f)
        config["feature_store"]["reject_throttle"] = float(optimal_threshold)
        with open(config_path, "w", encoding="utf8") as f:
            yaml.dump(config, f)
        logger.info(f"The optimal threshold is: {optimal_threshold}, saved it to {config_path}")  # noqa E501

    def query(self, question: str, context_max_length: int = 16000):  # , tracker: QueryTracker = None):
        """Processes a query and returns the best match from the vector store
        database. If the question is rejected, returns None.

        Args:
            question (str): The question asked by the user.

        Returns:
            str: The best matching chunk, or None.
            str: The best matching text, or None
        """
        print(f"DEBUG -1: enter query")

        if question is None or len(question) < 1:
            print(f"DEBUG 0: len error")

            return None, None, []

        if len(question) > 512:
            logger.warning("input too long, truncate to 512")
            question = question[0:512]

        # reject, docs = self.is_reject(question=question)
        # assert (len(docs) > 0)
        # if reject:
        # return None, None, [docs[0][0].metadata['source']]

        docs = self.compression_retriever.get_relevant_documents(question)

        print(f"DEBUG 1: {docs}")

        # if tracker is not None:
        #     tracker.log('retrieve', [doc.metadata['source'] for doc in docs])
        chunks = []
        context = ""
        references = []

        # add file text to context, until exceed `context_max_length`

        file_opr = FileOperation()
        for idx, doc in enumerate(docs):
            chunk = doc.page_content
            chunks.append(chunk)

            if "read" not in doc.metadata:
                logger.error(
                    "If you are using the version before 20240319, please rerun `python3 -m huixiangdou.service.feature_store`"
                )
                raise Exception("huixiangdou version mismatch")
            file_text, error = file_opr.read(doc.metadata["read"])
            if error is not None:
                # read file failed, skip
                print(f"DEBUG 2: error")

                continue

            source = doc.metadata["source"]
            logger.info("target {} file length {}".format(source, len(file_text)))

            print(f"DEBUG 3: target {source}, file length {len(file_text)}")

            if len(file_text) + len(context) > context_max_length:
                if source in references:
                    continue
                references.append(source)
                # add and break
                add_len = context_max_length - len(context)
                if add_len <= 0:
                    break
                chunk_index = file_text.find(chunk)
                if chunk_index == -1:
                    # chunk not in file_text
                    context += chunk
                    context += "\n"
                    context += file_text[0 : add_len - len(chunk) - 1]
                else:
                    start_index = max(0, chunk_index - (add_len - len(chunk)))
                    context += file_text[start_index : start_index + add_len]
                break

            if source not in references:
                context += file_text
                context += "\n"
                references.append(source)

        context = context[0:context_max_length]
        logger.debug("query:{} top1 file:{}".format(question, references[0]))
        return "\n".join(chunks), context, [os.path.basename(r) for r in references]


class CacheRetriever:

    def __init__(self, config_path: str, max_len: int = 4):
        self.cache = dict()
        self.max_len = max_len
        with open(config_path, "r", encoding="utf-8") as f:
            config = yaml.safe_load(f)["feature_store"]
            embedding_model_path = config["embedding_model_path"]
            reranker_model_path = config["reranker_model_path"]

        embedding_model_path = snapshot_download(embedding_model_path, cache_dir=WEB_CONFIGS.RAG_MODEL_DIR)
        reranker_model_path = snapshot_download(reranker_model_path, cache_dir=WEB_CONFIGS.RAG_MODEL_DIR)

        # load text2vec and rerank model
        logger.info("loading test2vec and rerank models")
        self.embeddings = HuggingFaceEmbeddings(
            model_name=embedding_model_path,
            model_kwargs={"device": "cuda"},
            encode_kwargs={"batch_size": 1, "normalize_embeddings": True},
        )
        self.embeddings.client = self.embeddings.client.half()
        reranker_args = {"model": reranker_model_path, "top_n": 7, "device": "cuda", "use_fp16": True}
        self.reranker = BCERerank(**reranker_args)

    def get(self, fs_id: str = "default", config_path="config.yaml", work_dir="workdir"):
        if fs_id in self.cache:
            self.cache[fs_id]["time"] = time.time()
            return self.cache[fs_id]["retriever"]

        if not os.path.exists(work_dir) or not os.path.exists(config_path):
            return None, "workdir or config.yaml not exist"

        with open(config_path, "r", encoding="utf-8") as f:
            reject_throttle = yaml.safe_load(f)["feature_store"]["reject_throttle"]

        if len(self.cache) >= self.max_len:
            # drop the oldest one
            del_key = None
            min_time = time.time()
            for key, value in self.cache.items():
                cur_time = value["time"]
                if cur_time < min_time:
                    min_time = cur_time
                    del_key = key

            if del_key is not None:
                del_value = self.cache[del_key]
                self.cache.pop(del_key)
                del del_value["retriever"]

        retriever = Retriever(
            embeddings=self.embeddings, reranker=self.reranker, work_dir=work_dir, reject_throttle=reject_throttle
        )
        self.cache[fs_id] = {"retriever": retriever, "time": time.time()}
        return retriever

    def pop(self, fs_id: str):
        if fs_id not in self.cache:
            return
        del_value = self.cache[fs_id]
        self.cache.pop(fs_id)
        # manually free memory
        del del_value