|
""" |
|
TTS |
|
https://github.com/RVC-Boss/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py |
|
""" |
|
|
|
import os |
|
import re |
|
import shutil |
|
import time |
|
from dataclasses import dataclass |
|
from io import BytesIO |
|
from pathlib import Path |
|
|
|
import LangSegment |
|
import librosa |
|
import numpy as np |
|
import soundfile as sf |
|
import streamlit as st |
|
import torch |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
from transformers.models.bert.modeling_bert import BertForMaskedLM |
|
from transformers.models.bert.tokenization_bert_fast import BertTokenizerFast |
|
|
|
from utils import HParams |
|
from utils.tts.gpt_sovits.AR.models.t2s_lightning_module import Text2SemanticLightningModule |
|
from utils.tts.gpt_sovits.module import cnhubert |
|
from utils.tts.gpt_sovits.module.cnhubert import CNHubert |
|
from utils.tts.gpt_sovits.module.mel_processing import spectrogram_torch |
|
from utils.tts.gpt_sovits.module.models import SynthesizerTrn |
|
from utils.tts.gpt_sovits.text import cleaned_text_to_sequence |
|
from utils.tts.gpt_sovits.text.cleaner import clean_text |
|
from utils.tts.gpt_sovits.utils import load_audio |
|
from utils.web_configs import WEB_CONFIGS |
|
|
|
symbol_splits = { |
|
",", |
|
"。", |
|
"?", |
|
"!", |
|
",", |
|
".", |
|
"?", |
|
"!", |
|
"~", |
|
":", |
|
":", |
|
"—", |
|
"…", |
|
} |
|
|
|
DEVICE = "cuda" |
|
HZ = 50 |
|
|
|
|
|
def get_bert_feature(text, bert_tokenizer, bert_model, word2ph): |
|
with torch.no_grad(): |
|
inputs = bert_tokenizer(text, return_tensors="pt") |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(DEVICE) |
|
res = bert_model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] |
|
assert len(word2ph) == len(text) |
|
phone_level_feature = [] |
|
for i in range(len(word2ph)): |
|
repeat_feature = res[i].repeat(word2ph[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
return phone_level_feature.T |
|
|
|
|
|
def change_sovits_weights(sovits_path, is_half): |
|
|
|
dict_s2 = torch.load(sovits_path, map_location="cpu") |
|
hps = dict_s2["config"] |
|
hps.model.semantic_frame_rate = "25hz" |
|
vq_model = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
) |
|
if "pretrained" not in sovits_path: |
|
del vq_model.enc_q |
|
if is_half: |
|
vq_model = vq_model.half() |
|
vq_model = vq_model.to(DEVICE) |
|
vq_model.eval() |
|
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) |
|
|
|
return vq_model, hps |
|
|
|
|
|
def change_gpt_weights(gpt_path, is_half): |
|
dict_s1 = torch.load(gpt_path, map_location="cpu") |
|
config = dict_s1["config"] |
|
max_sec = config["data"]["max_sec"] |
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
if is_half: |
|
t2s_model = t2s_model.half() |
|
t2s_model = t2s_model.to(DEVICE) |
|
t2s_model.eval() |
|
total = sum([param.nelement() for param in t2s_model.parameters()]) |
|
print("Number of parameter: %.2fM" % (total / 1e6)) |
|
|
|
return max_sec, t2s_model |
|
|
|
|
|
def get_spepc(hps, filename): |
|
audio = load_audio(filename, int(hps.data.sampling_rate)) |
|
audio = torch.FloatTensor(audio) |
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
hps.data.filter_length, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
center=False, |
|
) |
|
return spec |
|
|
|
|
|
def clean_text_inf(text, language): |
|
phones, word2ph, norm_text = clean_text(text, language) |
|
phones = cleaned_text_to_sequence(phones) |
|
return phones, word2ph, norm_text |
|
|
|
|
|
def get_bert_inf(phones, word2ph, bert_tokenizer, bert_model, norm_text, language, is_half=True): |
|
language = language.replace("all_", "") |
|
if language == "zh": |
|
bert = get_bert_feature(norm_text, bert_tokenizer, bert_model, word2ph).to(DEVICE) |
|
else: |
|
bert = torch.zeros((1024, len(phones)), dtype=torch.float16 if is_half else torch.float32).to(DEVICE) |
|
|
|
return bert |
|
|
|
|
|
def get_first(text): |
|
pattern = "[" + "".join(re.escape(sep) for sep in symbol_splits) + "]" |
|
text = re.split(pattern, text)[0].strip() |
|
return text |
|
|
|
|
|
def get_phones_and_bert(text, bert_tokenizer, bert_model, language, is_half=True): |
|
if language in {"en", "all_zh", "all_ja"}: |
|
language = language.replace("all_", "") |
|
if language == "en": |
|
LangSegment.setfilters(["en"]) |
|
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text)) |
|
else: |
|
|
|
formattext = text |
|
while " " in formattext: |
|
formattext = formattext.replace(" ", " ") |
|
phones, word2ph, norm_text = clean_text_inf(formattext, language) |
|
if language == "zh": |
|
bert = get_bert_feature(norm_text, bert_tokenizer, bert_model, word2ph).to(DEVICE) |
|
else: |
|
bert = torch.zeros( |
|
(1024, len(phones)), |
|
dtype=torch.float16 if is_half else torch.float32, |
|
).to(DEVICE) |
|
elif language in {"zh", "ja", "auto"}: |
|
textlist = [] |
|
langlist = [] |
|
LangSegment.setfilters(["zh", "ja", "en", "ko"]) |
|
if language == "auto": |
|
for tmp in LangSegment.getTexts(text): |
|
if tmp["lang"] == "ko": |
|
langlist.append("zh") |
|
textlist.append(tmp["text"]) |
|
else: |
|
langlist.append(tmp["lang"]) |
|
textlist.append(tmp["text"]) |
|
else: |
|
for tmp in LangSegment.getTexts(text): |
|
if tmp["lang"] == "en": |
|
langlist.append(tmp["lang"]) |
|
else: |
|
|
|
langlist.append(language) |
|
textlist.append(tmp["text"]) |
|
print(textlist) |
|
print(langlist) |
|
phones_list = [] |
|
bert_list = [] |
|
norm_text_list = [] |
|
for i in range(len(textlist)): |
|
lang = langlist[i] |
|
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) |
|
bert = get_bert_inf(phones, word2ph, bert_tokenizer, bert_model, norm_text, lang, is_half) |
|
phones_list.append(phones) |
|
norm_text_list.append(norm_text) |
|
bert_list.append(bert) |
|
bert = torch.cat(bert_list, dim=1) |
|
phones = sum(phones_list, []) |
|
norm_text = "".join(norm_text_list) |
|
|
|
return phones, bert.to(torch.float16 if is_half else torch.float32), norm_text |
|
|
|
|
|
def merge_short_text_in_array(texts, threshold): |
|
if (len(texts)) < 2: |
|
return texts |
|
result = [] |
|
text = "" |
|
for ele in texts: |
|
text += ele |
|
if len(text) >= threshold: |
|
result.append(text) |
|
text = "" |
|
if len(text) > 0: |
|
if len(result) == 0: |
|
result.append(text) |
|
else: |
|
result[len(result) - 1] += text |
|
return result |
|
|
|
|
|
def get_tts_wav( |
|
text, |
|
text_language, |
|
bert_tokenizer, |
|
bert_model, |
|
ssl_model, |
|
vq_model, |
|
hps, |
|
max_sec, |
|
t2s_model: Text2SemanticLightningModule, |
|
ref_wav_path, |
|
prompt, |
|
refer, |
|
bert1, |
|
phones1, |
|
zero_wav, |
|
prompt_text, |
|
prompt_language, |
|
how_to_cut="不切", |
|
top_k=20, |
|
top_p=0.6, |
|
temperature=0.6, |
|
ref_free=False, |
|
is_half=True, |
|
process_bar=None, |
|
): |
|
|
|
dict_language = { |
|
"中文": "all_zh", |
|
"英文": "en", |
|
"日文": "all_ja", |
|
"中英混合": "zh", |
|
"日英混合": "ja", |
|
"多语种混合": "auto", |
|
} |
|
|
|
prompt_language = dict_language[prompt_language] |
|
text_language = dict_language[text_language] |
|
|
|
text = text.strip("\n") |
|
if text[0] not in symbol_splits and len(get_first(text)) < 4: |
|
text = "。" + text |
|
print("=" * 20, "\n实际输入的目标文本:", text) |
|
|
|
text = cut_sentences(text, how_to_cut) |
|
print("=" * 20, "\n实际输入的目标文本(切句后):", text) |
|
|
|
texts = text.split("\n") |
|
texts = merge_short_text_in_array(texts, 5) |
|
|
|
audio_opt = [] |
|
|
|
|
|
|
|
for text_idx, text in enumerate(texts): |
|
|
|
if process_bar is not None: |
|
percent_complete = (text_idx + 1) / len(texts) |
|
process_bar.progress(percent_complete, text=f"正在生成语音 {round(percent_complete * 100, 2)} % ...") |
|
|
|
|
|
if len(text.strip()) == 0: |
|
continue |
|
if text[-1] not in symbol_splits: |
|
text += "。" if text_language != "en" else "." |
|
print("=" * 20, "\n实际输入的目标文本(每句):", text) |
|
phones2, bert2, norm_text2 = get_phones_and_bert(text, bert_tokenizer, bert_model, text_language, is_half) |
|
print("=" * 20, "\n前端处理后的文本(每句):", norm_text2) |
|
|
|
if not ref_free: |
|
bert = torch.cat([bert1, bert2], 1) |
|
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(DEVICE).unsqueeze(0) |
|
else: |
|
pass |
|
|
|
|
|
|
|
bert = bert.to(DEVICE).unsqueeze(0) |
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(DEVICE) |
|
|
|
with torch.no_grad(): |
|
pred_semantic, idx = t2s_model.model.infer_panel( |
|
all_phoneme_ids, |
|
all_phoneme_len, |
|
None if ref_free else prompt, |
|
bert, |
|
top_k=top_k, |
|
top_p=top_p, |
|
temperature=temperature, |
|
early_stop_num=HZ * max_sec, |
|
) |
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) |
|
|
|
|
|
audio = ( |
|
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(DEVICE).unsqueeze(0), refer).detach().cpu().numpy()[0, 0] |
|
) |
|
max_audio = np.abs(audio).max() |
|
if max_audio > 1: |
|
audio /= max_audio |
|
audio_opt.append(audio) |
|
audio_opt.append(zero_wav) |
|
|
|
return hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) |
|
|
|
|
|
def split_txt(todo_text): |
|
"""根据 symbol_splits 标点切分句子 |
|
|
|
Args: |
|
todo_text (str): 原文本 |
|
|
|
Returns: |
|
list: 切后的文本 list |
|
""" |
|
|
|
todo_text = todo_text.replace("……", "。").replace("——", ",") |
|
|
|
if todo_text[-1] not in symbol_splits: |
|
todo_text += "。" |
|
|
|
i_split_head = i_split_tail = 0 |
|
len_text = len(todo_text) |
|
todo_texts = [] |
|
while 1: |
|
if i_split_head >= len_text: |
|
break |
|
if todo_text[i_split_head] in symbol_splits: |
|
i_split_head += 1 |
|
todo_texts.append(todo_text[i_split_tail:i_split_head]) |
|
i_split_tail = i_split_head |
|
else: |
|
i_split_head += 1 |
|
return todo_texts |
|
|
|
|
|
def cut_sentences(input_text, how_to_cut): |
|
|
|
inp = input_text.strip("\n") |
|
|
|
if how_to_cut == "凑四句一切": |
|
inps = split_txt(inp) |
|
split_idx = list(range(0, len(inps), 4)) |
|
split_idx[-1] = None |
|
if len(split_idx) > 1: |
|
opts = [] |
|
for idx in range(len(split_idx) - 1): |
|
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]])) |
|
else: |
|
opts = [inp] |
|
cut_txt = "\n".join(opts) |
|
|
|
elif how_to_cut == "凑50字一切": |
|
inps = split_txt(inp) |
|
if len(inps) < 2: |
|
return inp |
|
opts = [] |
|
summ = 0 |
|
tmp_str = "" |
|
for i in range(len(inps)): |
|
summ += len(inps[i]) |
|
tmp_str += inps[i] |
|
if summ > 50: |
|
summ = 0 |
|
opts.append(tmp_str) |
|
tmp_str = "" |
|
if tmp_str != "": |
|
opts.append(tmp_str) |
|
|
|
if len(opts) > 1 and len(opts[-1]) < 50: |
|
opts[-2] = opts[-2] + opts[-1] |
|
opts = opts[:-1] |
|
cut_txt = "\n".join(opts) |
|
|
|
elif how_to_cut == "按中文句号。切": |
|
cut_txt = "\n".join(["%s" % item for item in inp.strip("。").split("。")]) |
|
|
|
elif how_to_cut == "按英文句号.切": |
|
cut_txt = "\n".join(["%s" % item for item in inp.strip(".").split(".")]) |
|
|
|
elif how_to_cut == "按标点符号切": |
|
punds = r"[,.;?!、,。?!;:…]" |
|
items = re.split(f"({punds})", inp) |
|
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])] |
|
|
|
if len(items) % 2 == 1: |
|
mergeitems.append(items[-1]) |
|
cut_txt = "\n".join(mergeitems) |
|
|
|
else: |
|
cut_txt = inp |
|
|
|
cut_txt = cut_txt.replace("\n\n", "\n") |
|
return cut_txt |
|
|
|
|
|
def get_gpt_and_sovits_model_path(voice_character_name: str, tts_model_root: Path): |
|
gpt_path_list = [i for i in tts_model_root.glob(f"{voice_character_name}*.ckpt")] |
|
sovits_path_list = [i for i in tts_model_root.glob(f"{voice_character_name}*.pth")] |
|
|
|
if len(gpt_path_list) > 0 and len(sovits_path_list) > 0: |
|
return str(gpt_path_list[0]), str(sovits_path_list[0]) |
|
else: |
|
return None, None |
|
|
|
|
|
@dataclass |
|
class HandlerTTS: |
|
bert_tokenizer: BertTokenizerFast |
|
bert_model: BertForMaskedLM |
|
ssl_model: CNHubert |
|
max_sec: KeyboardInterrupt |
|
t2s_model: Text2SemanticLightningModule |
|
vq_model: SynthesizerTrn |
|
hps: HParams |
|
inp_ref: str |
|
prompt_text: str |
|
prompt: torch.Tensor |
|
refer: torch.Tensor |
|
bert1: torch.Tensor |
|
phones1: list |
|
zero_wav: np.ndarray |
|
|
|
|
|
@st.cache_resource |
|
def get_tts_model(voice_character_name="艾丝妲", is_half=True): |
|
|
|
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" |
|
from huggingface_hub import hf_hub_download, snapshot_download |
|
|
|
|
|
tts_star_model_root = Path(WEB_CONFIGS.TTS_MODEL_DIR).joinpath("star") |
|
|
|
gpt_path, sovits_path = get_gpt_and_sovits_model_path(voice_character_name, tts_star_model_root) |
|
|
|
if gpt_path is None: |
|
if tts_star_model_root.exists(): |
|
|
|
shutil.rmtree(tts_star_model_root) |
|
|
|
|
|
tts_model_dir = hf_hub_download( |
|
repo_id="baicai1145/GPT-SoVITS-STAR", |
|
filename=f"{voice_character_name}.zip", |
|
local_dir=str(tts_star_model_root), |
|
) |
|
|
|
|
|
os.system(f"cd {str(tts_star_model_root)} && unzip {voice_character_name}.zip") |
|
|
|
gpt_path, sovits_path = get_gpt_and_sovits_model_path(voice_character_name, tts_star_model_root) |
|
print(f"gpt_path dir = {gpt_path}") |
|
print(f"sovits_path dir = {sovits_path}") |
|
|
|
inf_name = "平静说话-你们经过的收容舱段收藏着诸多「奇物」和「遗器」,是最核心的研究场所。.wav" |
|
prompt_text = inf_name.split("-")[-1].replace(".wav", "") |
|
ref_wav_path = Path(tts_star_model_root).joinpath("参考音频", inf_name) |
|
|
|
|
|
tts_model_dir = snapshot_download(repo_id="lj1995/GPT-SoVITS", local_dir=Path(WEB_CONFIGS.TTS_MODEL_DIR).joinpath("pretrain")) |
|
cnhubert_base_path = os.path.join(tts_model_dir, "chinese-hubert-base") |
|
bert_path = os.path.join(tts_model_dir, "chinese-roberta-wwm-ext-large") |
|
|
|
print(f"cnhubert_base_path dir = {cnhubert_base_path}") |
|
print(f"bert_path dir = {bert_path}") |
|
|
|
print("Loading tts bert model...") |
|
bert_tokenizer = AutoTokenizer.from_pretrained(bert_path) |
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) |
|
if is_half: |
|
bert_model = bert_model.half() |
|
bert_model = bert_model.to(DEVICE) |
|
print("load tts bert model done!") |
|
|
|
print("Loading tts ssl model...") |
|
ssl_model = cnhubert.get_model(cnhubert_base_path) |
|
if is_half: |
|
ssl_model = ssl_model.half() |
|
ssl_model = ssl_model.to(DEVICE) |
|
print("load tts ssl model done !") |
|
|
|
max_sec, t2s_model = change_gpt_weights(gpt_path, is_half) |
|
vq_model, hps = change_sovits_weights(sovits_path, is_half) |
|
|
|
zero_wav = np.zeros( |
|
int(hps.data.sampling_rate * 0.3), |
|
dtype=np.float16 if is_half else np.float32, |
|
) |
|
print("=" * 20, "\n加载参考音频 。。。") |
|
t1 = time.time() |
|
with torch.no_grad(): |
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000) |
|
if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000: |
|
raise OSError("参考音频在3~10秒范围外,请更换!") |
|
wav16k = torch.from_numpy(wav16k) |
|
zero_wav_torch = torch.from_numpy(zero_wav) |
|
|
|
wav16k = wav16k.half() |
|
zero_wav_torch = zero_wav_torch.half() |
|
|
|
wav16k = wav16k.to(DEVICE) |
|
zero_wav_torch = zero_wav_torch.to(DEVICE) |
|
|
|
wav16k = torch.cat([wav16k, zero_wav_torch]) |
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) |
|
codes = vq_model.extract_latent(ssl_content) |
|
|
|
prompt_semantic = codes[0, 0] |
|
prompt = prompt_semantic.unsqueeze(0).to(DEVICE) |
|
print("加载 参考音频 用时: ", time.time() - t1) |
|
|
|
t3 = time.time() |
|
refer = get_spepc(hps, ref_wav_path) |
|
if is_half: |
|
refer = refer.half() |
|
refer = refer.to(DEVICE) |
|
print("get_spepc 用时: ", time.time() - t3) |
|
|
|
ref_free = False |
|
dict_language = { |
|
"中文": "all_zh", |
|
"英文": "en", |
|
"日文": "all_ja", |
|
"中英混合": "zh", |
|
"日英混合": "ja", |
|
"多语种混合": "auto", |
|
} |
|
|
|
prompt_text = prompt_text.strip("\n") |
|
if prompt_text[-1] not in symbol_splits: |
|
prompt_text += "。" |
|
print("=" * 20, "\n音频参考文本:", prompt_text) |
|
|
|
if not ref_free: |
|
phones1, bert1, _ = get_phones_and_bert(prompt_text, bert_tokenizer, bert_model, dict_language["中英混合"], is_half) |
|
|
|
tts_handler = HandlerTTS( |
|
bert_tokenizer=bert_tokenizer, |
|
bert_model=bert_model, |
|
ssl_model=ssl_model, |
|
max_sec=max_sec, |
|
t2s_model=t2s_model, |
|
vq_model=vq_model, |
|
hps=hps, |
|
inp_ref=str(ref_wav_path), |
|
prompt_text=prompt_text, |
|
prompt=prompt, |
|
refer=refer, |
|
bert1=bert1, |
|
phones1=phones1, |
|
zero_wav=zero_wav, |
|
) |
|
|
|
return tts_handler |
|
|
|
|
|
def gen_tts_wav( |
|
text, |
|
text_language, |
|
bert_tokenizer, |
|
bert_model, |
|
ssl_model, |
|
vq_model, |
|
hps, |
|
max_sec, |
|
t2s_model, |
|
inp_ref, |
|
prompt_text, |
|
prompt, |
|
refer, |
|
bert1, |
|
phones1, |
|
zero_wav, |
|
wav_path_output, |
|
how_to_cut="凑四句一切", |
|
): |
|
|
|
process_bar = st.progress(0, text="正在生成语音...") |
|
|
|
|
|
sampling_rate, audio_data = get_tts_wav( |
|
text, |
|
text_language, |
|
bert_tokenizer, |
|
bert_model, |
|
ssl_model, |
|
vq_model, |
|
hps, |
|
max_sec, |
|
t2s_model, |
|
inp_ref, |
|
prompt, |
|
refer, |
|
bert1, |
|
phones1, |
|
zero_wav, |
|
prompt_text, |
|
prompt_language="中英混合", |
|
how_to_cut=how_to_cut, |
|
top_k=5, |
|
top_p=1, |
|
temperature=1, |
|
ref_free=False, |
|
is_half=True, |
|
process_bar=process_bar, |
|
) |
|
|
|
process_bar.progress(1, text=f"正在生成语音 100.00 % ...") |
|
process_bar.empty() |
|
|
|
|
|
wav = BytesIO() |
|
sf.write(wav, audio_data, sampling_rate, format="wav") |
|
wav.seek(0) |
|
|
|
with open(wav_path_output, "wb") as f: |
|
f.write(wav.getvalue()) |
|
print("output:", wav_path_output) |
|
|
|
|
|
def demo(): |
|
|
|
|
|
gpt_path = "./work_dirs/gpt_sovits/weights/GPT_weights/艾丝妲-e10.ckpt" |
|
sovits_path = "./work_dirs/gpt_sovits/weights/SoVITS_weights/艾丝妲_e25_s925.pth" |
|
|
|
|
|
cnhubert_base_path = "./work_dirs/gpt_sovits/weights/pretrained_models/chinese-hubert-base" |
|
bert_path = "./work_dirs/utils/tts/gpt_sovits/weights/pretrained_models/chinese-roberta-wwm-ext-large" |
|
|
|
inp_ref = r"./work_dirs/ref_wav/【开心】处理完之前的事情,这几天甚至都有空闲来车上转转了。.wav" |
|
|
|
bert_tokenizer, bert_model, ssl_model, max_sec, t2s_model, vq_model, hps = get_tts_model( |
|
bert_path, cnhubert_base_path, gpt_path, sovits_path, is_half=True |
|
) |
|
|
|
text = """哈喽哈喽,家人们好啊!今天呀,咱们这儿可是有大大的福利等着大家哦你们猜猜看是什么呢?没错啦,就是这款超级棒的本草精华洗发露啦!哎呀,我知道你们一定都想知道它的神奇之处吧?那就让小甜心来给你们一一揭秘吧💖 |
|
|
|
首先呢,这款洗发露的配方真的是超级温和的哦,就算是敏感肌的小仙女们也能安心使用呢!而且它还能深层清洁我们的头皮,把那些烦人的油脂和污垢通通赶走,让我们的头发更加清爽健康呢!💦💦 |
|
|
|
再来就是它的滋养效果啦,富含多种草本精华,轻轻一抹就能给我们的头皮提供满满的养分,让秀发更加乌黑亮丽,顺滑如丝哦!💖💖💖 |
|
|
|
还有啊,这款洗发露的泡沫真的是超级丰富呢!轻轻一挤就能挤出好多好多细腻绵密的泡沫来,洗起来既舒服又干净,感觉就像是在给我们的头发做SPA一样呢!💖💖💖 |
|
|
|
最后啊,这款洗发露还特别容易冲洗哦!用完之后轻轻一冲就能把泡沫全部冲洗干净,不会残留任何黏腻感,让你随时随地保持清爽状态哦!💦💦💦 |
|
|
|
而且呀,这款洗发露不仅适用于各种发质,无论是油性、干性还是混合性,都能轻松应对呢!所以家人们,无论你是哪种发质,只要用了这款洗发露,保证让你的头发焕发出前所未有的光彩哦!💖💖💖 |
|
|
|
好啦,家人们,这么一款集温和、深层清洁、滋养、丰富泡沫、易冲洗于一身的神级洗发露,你们是不是已经心动了呢?快来把它带回家吧,让你的秀发从此告别烦恼,迎接美丽新世界吧!💖💖💖""" |
|
text_language = "中英混合" |
|
|
|
gen_tts_wav( |
|
text, |
|
text_language, |
|
bert_tokenizer, |
|
bert_model, |
|
ssl_model, |
|
vq_model, |
|
hps, |
|
max_sec, |
|
t2s_model, |
|
inp_ref, |
|
wav_path_output=r"./work_dirs/tts_wavs/gpt-sovits-test.wav", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo() |
|
|