|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
from diffusers import AutoencoderKL |
|
|
|
|
|
class VAE(): |
|
""" |
|
VAE (Variational Autoencoder) class for image processing. |
|
""" |
|
|
|
def __init__(self, model_path="./models/sd-vae-ft-mse/", resized_img=256, use_float16=False): |
|
""" |
|
Initialize the VAE instance. |
|
|
|
:param model_path: Path to the trained model. |
|
:param resized_img: The size to which images are resized. |
|
:param use_float16: Whether to use float16 precision. |
|
""" |
|
self.model_path = model_path |
|
self.vae = AutoencoderKL.from_pretrained(self.model_path) |
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.vae.to(self.device) |
|
|
|
if use_float16: |
|
self.vae = self.vae.half() |
|
self._use_float16 = True |
|
else: |
|
self._use_float16 = False |
|
|
|
self.scaling_factor = self.vae.config.scaling_factor |
|
self.transform = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
self._resized_img = resized_img |
|
self._mask_tensor = self.get_mask_tensor() |
|
|
|
def get_mask_tensor(self): |
|
""" |
|
Creates a mask tensor for image processing. |
|
:return: A mask tensor. |
|
""" |
|
mask_tensor = torch.zeros((self._resized_img,self._resized_img)) |
|
mask_tensor[:self._resized_img//2,:] = 1 |
|
mask_tensor[mask_tensor< 0.5] = 0 |
|
mask_tensor[mask_tensor>= 0.5] = 1 |
|
return mask_tensor |
|
|
|
def preprocess_img(self,img_name,half_mask=False): |
|
""" |
|
Preprocess an image for the VAE. |
|
|
|
:param img_name: The image file path or a list of image file paths. |
|
:param half_mask: Whether to apply a half mask to the image. |
|
:return: A preprocessed image tensor. |
|
""" |
|
window = [] |
|
if isinstance(img_name, str): |
|
window_fnames = [img_name] |
|
for fname in window_fnames: |
|
img = cv2.imread(fname) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = cv2.resize(img, (self._resized_img, self._resized_img), |
|
interpolation=cv2.INTER_LANCZOS4) |
|
window.append(img) |
|
else: |
|
img = cv2.cvtColor(img_name, cv2.COLOR_BGR2RGB) |
|
window.append(img) |
|
|
|
x = np.asarray(window) / 255. |
|
x = np.transpose(x, (3, 0, 1, 2)) |
|
x = torch.squeeze(torch.FloatTensor(x)) |
|
if half_mask: |
|
x = x * (self._mask_tensor>0.5) |
|
x = self.transform(x) |
|
|
|
x = x.unsqueeze(0) |
|
x = x.to(self.vae.device) |
|
|
|
return x |
|
|
|
def encode_latents(self,image): |
|
""" |
|
Encode an image into latent variables. |
|
|
|
:param image: The image tensor to encode. |
|
:return: The encoded latent variables. |
|
""" |
|
with torch.no_grad(): |
|
init_latent_dist = self.vae.encode(image.to(self.vae.dtype)).latent_dist |
|
init_latents = self.scaling_factor * init_latent_dist.sample() |
|
return init_latents |
|
|
|
def decode_latents(self, latents): |
|
""" |
|
Decode latent variables back into an image. |
|
:param latents: The latent variables to decode. |
|
:return: A NumPy array representing the decoded image. |
|
""" |
|
latents = (1/ self.scaling_factor) * latents |
|
image = self.vae.decode(latents.to(self.vae.dtype)).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.detach().cpu().permute(0, 2, 3, 1).float().numpy() |
|
image = (image * 255).round().astype("uint8") |
|
image = image[...,::-1] |
|
return image |
|
|
|
def get_latents_for_unet(self,img): |
|
""" |
|
Prepare latent variables for a U-Net model. |
|
:param img: The image to process. |
|
:return: A concatenated tensor of latents for U-Net input. |
|
""" |
|
|
|
ref_image = self.preprocess_img(img,half_mask=True) |
|
masked_latents = self.encode_latents(ref_image) |
|
ref_image = self.preprocess_img(img,half_mask=False) |
|
ref_latents = self.encode_latents(ref_image) |
|
latent_model_input = torch.cat([masked_latents, ref_latents], dim=1) |
|
return latent_model_input |
|
|
|
if __name__ == "__main__": |
|
vae_mode_path = "./models/sd-vae-ft-mse/" |
|
vae = VAE(model_path = vae_mode_path,use_float16=False) |
|
img_path = "./results/sun001_crop/00000.png" |
|
|
|
crop_imgs_path = "./results/sun001_crop/" |
|
latents_out_path = "./results/latents/" |
|
if not os.path.exists(latents_out_path): |
|
os.mkdir(latents_out_path) |
|
|
|
files = os.listdir(crop_imgs_path) |
|
files.sort() |
|
files = [file for file in files if file.split(".")[-1] == "png"] |
|
|
|
for file in files: |
|
index = file.split(".")[0] |
|
img_path = crop_imgs_path + file |
|
latents = vae.get_latents_for_unet(img_path) |
|
print(img_path,"latents",latents.size()) |
|
|
|
|
|
|
|
|
|
|
|
|