File size: 12,144 Bytes
e3d4122 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
# Action
Actions, also called **tools**, provide a suite of functions LLM-driven agents can use to interact with the real world and perform complex tasks.
## Basic Concepts
### Tool & Toolkit
There are two categories of tools:
- tool: provide only one API to call.
- toolkit: implement multiple APIs that undertake different sub-tasks.
### Tool Description
In Lagent, the tool description is a dictionary containing the action's core information of usage, observed by LLMs for decision-making.
For simple tools, the description can be created as follows
```python
TOOL_DESCRIPTION = {
'name': 'bold', # name of the tool
'description': 'a function used to make text bold', # introduce the tool's function
'parameters': [ # a list of parameters the tool take.
{
'name': 'text', 'type': 'STRING', 'description': 'input content'
}
],
'required': ['text'], # specify names of parameters required
}
```
In some situations there may be optional `return_data`, `parameter_description` keys describing the returns and argument passing format respectively.
```{attention}
`parameter_description` is usually inserted into the tool description automatically by the action's parser. It will be introduced in [Interface Design](#interface-design) .
```
For toolkits, the description is very similar but nest submethods
```python
TOOL_DESCRIPTION = {
'name': 'PhraseEmphasis', # name of the toolkit
'description': 'a toolkit which provides different styles of text emphasis', # introduce the tool's function
'api_list': [
{
'name': 'bold',
'description': 'make text bold',
'parameters': [
{
'name': 'text', 'type': 'STRING', 'description': 'input content'
}
],
'required': ['text']
},
{
'name': 'italic',
'description': 'make text italic',
'parameters': [
{
'name': 'text', 'type': 'STRING', 'description': 'input content'
}
],
'required': ['text']
}
]
}
```
## Make Functions Tools
It's not necessary to prepare an extra description for a defined function. In Lagent we provide a decorator `tool_api` which can conveniently turn a function into a tool by automatically parsing the function's typehints and dosctrings to generate the description dictionary and binding it to an attribute `api_description`.
```python
from lagent import tool_api
@tool_api
def bold(text: str) -> str:
"""make text bold
Args:
text (str): input text
Returns:
str: bold text
"""
return '**' + text + '**'
bold.api_description
```
```python
{'name': 'bold',
'description': 'make text bold',
'parameters': [{'name': 'text',
'type': 'STRING',
'description': 'input text'}],
'required': ['text']}
```
Once `returns_named_value` is enabled you should declare the name of the return data, which will be processed to form a new field `return_data`:
```python
@tool_api(returns_named_value=True)
def bold(text: str) -> str:
"""make text bold
Args:
text (str): input text
Returns:
bold_text (str): bold text
"""
return '**' + text + '**'
bold.api_description
```
```python
{'name': 'bold',
'description': 'make text bold',
'parameters': [{'name': 'text',
'type': 'STRING',
'description': 'input text'}],
'required': ['text'],
'return_data': [{'name': 'bold_text',
'description': 'bold text',
'type': 'STRING'}]}
```
Sometimes the tool may return a `dict` or `tuple`, and you want to elaborate each member in `return_data` rather than take them as a whole. Set `explode_return=True` and list them in the return part of docstrings.
```python
@tool_api(explode_return=True)
def list_args(a: str, b: int, c: float = 0.0) -> dict:
"""Return arguments in dict format
Args:
a (str): a
b (int): b
c (float): c
Returns:
dict: input arguments
- a (str): a
- b (int): b
- c: c
"""
return {'a': a, 'b': b, 'c': c}
```
```python
{'name': 'list_args',
'description': 'Return arguments in dict format',
'parameters': [{'name': 'a', 'type': 'STRING', 'description': 'a'},
{'name': 'b', 'type': 'NUMBER', 'description': 'b'},
{'name': 'c', 'type': 'FLOAT', 'description': 'c'}],
'required': ['a', 'b'],
'return_data': [{'name': 'a', 'description': 'a', 'type': 'STRING'},
{'name': 'b', 'description': 'b', 'type': 'NUMBER'},
{'name': 'c', 'description': 'c'}]}
```
```{warning}
Only Google style Python docstrings is currently supported.
```
## Interface Design
`BaseAction(description=None, parser=JsonParser, enable=True)` is the base class all actions should inherit from. It takes three initialization arguments
- **description**: a tool description dictionary, used set instance attribute `description`. Mostly you don't need explicitly pass this argument since the meta class of `BaseAction` will search methods decorated by `tool_api` and assemble their `api_description` as a class attribute `__tool_description__`, and if the initial `description` is left null, then `__tool_description__` will be copied as `description`.
- **parser**: `BaseParser` class. It will instantialize a parser used to validate the arguments of APIs in `description`.
For example, `JsonParser` requires arguments passed in the format of JSON or `dict`. To make LLMs aware of this, It inserts a field `parameter_description` into the `description`.
```python
from lagent import BaseAction
action = BaseAction(
{
'name': 'bold',
'description': 'a function used to make text bold',
'parameters': [
{
'name': 'text', 'type': 'STRING', 'description': 'input content'
}
],
'required': ['text']
}
)
action.description
```
```python
{'name': 'bold',
'description': 'a function used to make text bold',
'parameters': [{'name': 'text',
'type': 'STRING',
'description': 'input content'}],
'required': ['text'],
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}
```
- **enable**: specify whether the tool is available.
### Custom Action
A simple tool must have its `run` method implemented, while APIs of toolkits should avoid naming conflicts with this reserved word.
```{tip}
`run` is allowed not to be decorated by `tool_api` for simple tools unless you want to hint the return data.
```
```python
class Bold(BaseAction):
def run(self, text: str):
"""make text bold
Args:
text (str): input text
Returns:
str: bold text
"""
return '**' + text + '**'
class PhraseEmphasis(BaseAction):
"""a toolkit which provides different styles of text emphasis"""
@tool_api
def bold(self, text):
"""make text bold
Args:
text (str): input text
Returns:
str: bold text
"""
return '**' + text + '**'
@tool_api
def italic(self, text):
"""make text italic
Args:
text (str): input text
Returns:
str: italic text
"""
return '*' + text + '*'
# Inspect the default description
# Bold.__tool_description__, PhraseEmphasis.__tool_description__
```
### Auto-registration
Any subclass of `BaseAction` will be registered automatically. You can use `list_tools()` and `get_tool()` to view all tools and initialize by name.
```python
from lagent import list_tools, get_tool
list_tools()
```
```python
['BaseAction',
'InvalidAction',
'NoAction',
'FinishAction',
'ArxivSearch',
'BINGMap',
'GoogleScholar',
'GoogleSearch',
'IPythonInterpreter',
'PPT',
'PythonInterpreter',
'Bold',
'PhraseEmphasis']
```
Create a `PhraseEmphasis` object
```python
action = get_tool('PhraseEmphasis')
action.description
```
```python
{'name': 'PhraseEmphasis',
'description': 'a toolkit which provides different styles of text emphasis',
'api_list': [{'name': 'bold',
'description': 'make text bold',
'parameters': [{'name': 'text',
'type': 'STRING',
'description': 'input text'}],
'required': ['text'],
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'},
{'name': 'italic',
'description': 'make text italic',
'parameters': [{'name': 'text',
'type': 'STRING',
'description': 'input text'}],
'required': ['text'],
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]}
```
## Tool Calling
### Run a Tool
`__call__` method of `Action` takes two arguments
- `inputs`: It depends on the action's parser. Often a string in specific formats generated by LLMs.
- `JsonParser`: Allow passing arguments in the format of JSON string or Python `dict`.
- `TupleParser`: Allow passing arguments in the format of tuple string format or Python `tuple`.
- `name`: Which API to call. Default is `run`.
It returns an `ActionReturn` object which encapsulates calling details
- `args`: Dictionary of action inputs.
- `type`: Action name.
- `result`: List of dicts. Each contains two keys: 'type' and 'content'. when errors occur, it is `None`.
- `errmsg`: Error message. Default is `None`.
Below is an example
```python
from lagent import IPythonInterpreter, TupleParser
action1 = IPythonInterpreter()
ret = action1('{"command": "import math;math.sqrt(100)"}')
print(ret.result)
ret = action1({'command': 'import math;math.sqrt(100)'})
print(ret.result)
action2 = IPythonInterpreter(parser=TupleParser)
ret = action2('("import math;math.sqrt(100)", )')
print(ret.result)
ret = action2(('import math;math.sqrt(100)',))
print(ret.result)
```
```python
[{'type': 'text', 'content': '10.0'}]
[{'type': 'text', 'content': '10.0'}]
[{'type': 'text', 'content': '10.0'}]
[{'type': 'text', 'content': '10.0'}]
```
### Dynamic Invocation
Lagent provides an `ActionExecutor` to manage multiple tools. It will flatten `api_list` of toolkits and rename each `{tool_name}.{api_name}`.
```python
from lagent import ActionExecutor, ArxivSearch, IPythonInterpreter
executor = ActionExecutor(actions=[ArxivSearch(), IPythonInterpreter()])
executor.get_actions_info() # This information is fed to LLMs as the tool meta prompt
```
```python
[{'name': 'ArxivSearch.get_arxiv_article_information',
'description': 'Run Arxiv search and get the article meta information.',
'parameters': [{'name': 'query',
'type': 'STRING',
'description': 'the content of search query'}],
'required': ['query'],
'return_data': [{'name': 'content',
'description': 'a list of 3 arxiv search papers',
'type': 'STRING'}],
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'},
{'name': 'IPythonInterpreter',
'description': "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is disabled. Do not make external web requests or API calls as they will fail.",
'parameters': [{'name': 'command',
'type': 'STRING',
'description': 'Python code'},
{'name': 'timeout',
'type': 'NUMBER',
'description': 'Upper bound of waiting time for Python script execution.'}],
'required': ['command'],
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]
```
Trigger an action through the executor
```python
ret = executor('IPythonInterpreter', '{"command": "import math;math.sqrt(100)"}')
ret.result
```
```python
[{'type': 'text', 'content': '10.0'}]
```
|