# Action Actions, also called **tools**, provide a suite of functions LLM-driven agents can use to interact with the real world and perform complex tasks. ## Basic Concepts ### Tool & Toolkit There are two categories of tools: - tool: provide only one API to call. - toolkit: implement multiple APIs that undertake different sub-tasks. ### Tool Description In Lagent, the tool description is a dictionary containing the action's core information of usage, observed by LLMs for decision-making. For simple tools, the description can be created as follows ```python TOOL_DESCRIPTION = { 'name': 'bold', # name of the tool 'description': 'a function used to make text bold', # introduce the tool's function 'parameters': [ # a list of parameters the tool take. { 'name': 'text', 'type': 'STRING', 'description': 'input content' } ], 'required': ['text'], # specify names of parameters required } ``` In some situations there may be optional `return_data`, `parameter_description` keys describing the returns and argument passing format respectively. ```{attention} `parameter_description` is usually inserted into the tool description automatically by the action's parser. It will be introduced in [Interface Design](#interface-design) . ``` For toolkits, the description is very similar but nest submethods ```python TOOL_DESCRIPTION = { 'name': 'PhraseEmphasis', # name of the toolkit 'description': 'a toolkit which provides different styles of text emphasis', # introduce the tool's function 'api_list': [ { 'name': 'bold', 'description': 'make text bold', 'parameters': [ { 'name': 'text', 'type': 'STRING', 'description': 'input content' } ], 'required': ['text'] }, { 'name': 'italic', 'description': 'make text italic', 'parameters': [ { 'name': 'text', 'type': 'STRING', 'description': 'input content' } ], 'required': ['text'] } ] } ``` ## Make Functions Tools It's not necessary to prepare an extra description for a defined function. In Lagent we provide a decorator `tool_api` which can conveniently turn a function into a tool by automatically parsing the function's typehints and dosctrings to generate the description dictionary and binding it to an attribute `api_description`. ```python from lagent import tool_api @tool_api def bold(text: str) -> str: """make text bold Args: text (str): input text Returns: str: bold text """ return '**' + text + '**' bold.api_description ``` ```python {'name': 'bold', 'description': 'make text bold', 'parameters': [{'name': 'text', 'type': 'STRING', 'description': 'input text'}], 'required': ['text']} ``` Once `returns_named_value` is enabled you should declare the name of the return data, which will be processed to form a new field `return_data`: ```python @tool_api(returns_named_value=True) def bold(text: str) -> str: """make text bold Args: text (str): input text Returns: bold_text (str): bold text """ return '**' + text + '**' bold.api_description ``` ```python {'name': 'bold', 'description': 'make text bold', 'parameters': [{'name': 'text', 'type': 'STRING', 'description': 'input text'}], 'required': ['text'], 'return_data': [{'name': 'bold_text', 'description': 'bold text', 'type': 'STRING'}]} ``` Sometimes the tool may return a `dict` or `tuple`, and you want to elaborate each member in `return_data` rather than take them as a whole. Set `explode_return=True` and list them in the return part of docstrings. ```python @tool_api(explode_return=True) def list_args(a: str, b: int, c: float = 0.0) -> dict: """Return arguments in dict format Args: a (str): a b (int): b c (float): c Returns: dict: input arguments - a (str): a - b (int): b - c: c """ return {'a': a, 'b': b, 'c': c} ``` ```python {'name': 'list_args', 'description': 'Return arguments in dict format', 'parameters': [{'name': 'a', 'type': 'STRING', 'description': 'a'}, {'name': 'b', 'type': 'NUMBER', 'description': 'b'}, {'name': 'c', 'type': 'FLOAT', 'description': 'c'}], 'required': ['a', 'b'], 'return_data': [{'name': 'a', 'description': 'a', 'type': 'STRING'}, {'name': 'b', 'description': 'b', 'type': 'NUMBER'}, {'name': 'c', 'description': 'c'}]} ``` ```{warning} Only Google style Python docstrings is currently supported. ``` ## Interface Design `BaseAction(description=None, parser=JsonParser, enable=True)` is the base class all actions should inherit from. It takes three initialization arguments - **description**: a tool description dictionary, used set instance attribute `description`. Mostly you don't need explicitly pass this argument since the meta class of `BaseAction` will search methods decorated by `tool_api` and assemble their `api_description` as a class attribute `__tool_description__`, and if the initial `description` is left null, then `__tool_description__` will be copied as `description`. - **parser**: `BaseParser` class. It will instantialize a parser used to validate the arguments of APIs in `description`. For example, `JsonParser` requires arguments passed in the format of JSON or `dict`. To make LLMs aware of this, It inserts a field `parameter_description` into the `description`. ```python from lagent import BaseAction action = BaseAction( { 'name': 'bold', 'description': 'a function used to make text bold', 'parameters': [ { 'name': 'text', 'type': 'STRING', 'description': 'input content' } ], 'required': ['text'] } ) action.description ``` ```python {'name': 'bold', 'description': 'a function used to make text bold', 'parameters': [{'name': 'text', 'type': 'STRING', 'description': 'input content'}], 'required': ['text'], 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'} ``` - **enable**: specify whether the tool is available. ### Custom Action A simple tool must have its `run` method implemented, while APIs of toolkits should avoid naming conflicts with this reserved word. ```{tip} `run` is allowed not to be decorated by `tool_api` for simple tools unless you want to hint the return data. ``` ```python class Bold(BaseAction): def run(self, text: str): """make text bold Args: text (str): input text Returns: str: bold text """ return '**' + text + '**' class PhraseEmphasis(BaseAction): """a toolkit which provides different styles of text emphasis""" @tool_api def bold(self, text): """make text bold Args: text (str): input text Returns: str: bold text """ return '**' + text + '**' @tool_api def italic(self, text): """make text italic Args: text (str): input text Returns: str: italic text """ return '*' + text + '*' # Inspect the default description # Bold.__tool_description__, PhraseEmphasis.__tool_description__ ``` ### Auto-registration Any subclass of `BaseAction` will be registered automatically. You can use `list_tools()` and `get_tool()` to view all tools and initialize by name. ```python from lagent import list_tools, get_tool list_tools() ``` ```python ['BaseAction', 'InvalidAction', 'NoAction', 'FinishAction', 'ArxivSearch', 'BINGMap', 'GoogleScholar', 'GoogleSearch', 'IPythonInterpreter', 'PPT', 'PythonInterpreter', 'Bold', 'PhraseEmphasis'] ``` Create a `PhraseEmphasis` object ```python action = get_tool('PhraseEmphasis') action.description ``` ```python {'name': 'PhraseEmphasis', 'description': 'a toolkit which provides different styles of text emphasis', 'api_list': [{'name': 'bold', 'description': 'make text bold', 'parameters': [{'name': 'text', 'type': 'STRING', 'description': 'input text'}], 'required': ['text'], 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}, {'name': 'italic', 'description': 'make text italic', 'parameters': [{'name': 'text', 'type': 'STRING', 'description': 'input text'}], 'required': ['text'], 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]} ``` ## Tool Calling ### Run a Tool `__call__` method of `Action` takes two arguments - `inputs`: It depends on the action's parser. Often a string in specific formats generated by LLMs. - `JsonParser`: Allow passing arguments in the format of JSON string or Python `dict`. - `TupleParser`: Allow passing arguments in the format of tuple string format or Python `tuple`. - `name`: Which API to call. Default is `run`. It returns an `ActionReturn` object which encapsulates calling details - `args`: Dictionary of action inputs. - `type`: Action name. - `result`: List of dicts. Each contains two keys: 'type' and 'content'. when errors occur, it is `None`. - `errmsg`: Error message. Default is `None`. Below is an example ```python from lagent import IPythonInterpreter, TupleParser action1 = IPythonInterpreter() ret = action1('{"command": "import math;math.sqrt(100)"}') print(ret.result) ret = action1({'command': 'import math;math.sqrt(100)'}) print(ret.result) action2 = IPythonInterpreter(parser=TupleParser) ret = action2('("import math;math.sqrt(100)", )') print(ret.result) ret = action2(('import math;math.sqrt(100)',)) print(ret.result) ``` ```python [{'type': 'text', 'content': '10.0'}] [{'type': 'text', 'content': '10.0'}] [{'type': 'text', 'content': '10.0'}] [{'type': 'text', 'content': '10.0'}] ``` ### Dynamic Invocation Lagent provides an `ActionExecutor` to manage multiple tools. It will flatten `api_list` of toolkits and rename each `{tool_name}.{api_name}`. ```python from lagent import ActionExecutor, ArxivSearch, IPythonInterpreter executor = ActionExecutor(actions=[ArxivSearch(), IPythonInterpreter()]) executor.get_actions_info() # This information is fed to LLMs as the tool meta prompt ``` ```python [{'name': 'ArxivSearch.get_arxiv_article_information', 'description': 'Run Arxiv search and get the article meta information.', 'parameters': [{'name': 'query', 'type': 'STRING', 'description': 'the content of search query'}], 'required': ['query'], 'return_data': [{'name': 'content', 'description': 'a list of 3 arxiv search papers', 'type': 'STRING'}], 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}, {'name': 'IPythonInterpreter', 'description': "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is disabled. Do not make external web requests or API calls as they will fail.", 'parameters': [{'name': 'command', 'type': 'STRING', 'description': 'Python code'}, {'name': 'timeout', 'type': 'NUMBER', 'description': 'Upper bound of waiting time for Python script execution.'}], 'required': ['command'], 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}] ``` Trigger an action through the executor ```python ret = executor('IPythonInterpreter', '{"command": "import math;math.sqrt(100)"}') ret.result ``` ```python [{'type': 'text', 'content': '10.0'}] ```