BridgeEight's picture
Update app.py
5dedc73 verified
raw
history blame
2.71 kB
from lmdeploy.serve.gradio.turbomind_coupled import *
from lmdeploy.messages import TurbomindEngineConfig
backend_config = TurbomindEngineConfig(max_batch_size=1, cache_max_entry_count=0.05)
model_path = 'internlm/internlm2-chat-20b-4bits'
InterFace.async_engine = AsyncEngine(
model_path=model_path,
backend='turbomind',
backend_config=backend_config,
tp=1)
with gr.Blocks(css=CSS, theme=THEME) as demo:
state_chatbot = gr.State([])
state_session_id = gr.State(0)
with gr.Column(elem_id='container'):
gr.Markdown('## LMDeploy Playground')
chatbot = gr.Chatbot(
elem_id='chatbot',
label=InterFace.async_engine.engine.model_name)
instruction_txtbox = gr.Textbox(
placeholder='Please input the instruction',
label='Instruction')
with gr.Row():
cancel_btn = gr.Button(value='Cancel', interactive=False)
reset_btn = gr.Button(value='Reset')
with gr.Row():
request_output_len = gr.Slider(1,
2048,
value=512,
step=1,
label='Maximum new tokens')
top_p = gr.Slider(0.01, 1, value=0.8, step=0.01, label='Top_p')
temperature = gr.Slider(0.01,
1.5,
value=0.7,
step=0.01,
label='Temperature')
send_event = instruction_txtbox.submit(chat_stream_local, [
instruction_txtbox, state_chatbot, cancel_btn, reset_btn,
state_session_id, top_p, temperature, request_output_len
], [state_chatbot, chatbot, cancel_btn, reset_btn])
instruction_txtbox.submit(
lambda: gr.Textbox.update(value=''),
[],
[instruction_txtbox],
)
cancel_btn.click(
cancel_local_func,
[state_chatbot, cancel_btn, reset_btn, state_session_id],
[state_chatbot, cancel_btn, reset_btn],
cancels=[send_event])
reset_btn.click(reset_local_func,
[instruction_txtbox, state_chatbot, state_session_id],
[state_chatbot, chatbot, instruction_txtbox],
cancels=[send_event])
def init():
with InterFace.lock:
InterFace.global_session_id += 1
new_session_id = InterFace.global_session_id
return new_session_id
demo.load(init, inputs=None, outputs=[state_session_id])
demo.queue(concurrency_count=InterFace.async_engine.instance_num,
max_size=100).launch()