Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,26 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load the model and tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("AkshatSurolia/ICD-10-Code-Prediction")
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained("AkshatSurolia/ICD-10-Code-Prediction")
|
8 |
+
|
9 |
+
# Create a Streamlit input text box
|
10 |
+
input_text = st.text_input("Enter your text:")
|
11 |
+
|
12 |
+
# If input is provided
|
13 |
+
if input_text:
|
14 |
+
# Limit the input length
|
15 |
+
truncated_input = input_text[:512]
|
16 |
+
|
17 |
+
# Tokenize the input
|
18 |
+
tokens = tokenizer(truncated_input, truncation=True, padding=True, return_tensors="pt")
|
19 |
+
|
20 |
+
# Get model output
|
21 |
+
output = model(**tokens)
|
22 |
+
|
23 |
+
# The output of the model is a logits vector, so we take the argmax to get the predicted class index
|
24 |
+
predicted_class_idx = torch.argmax(output.logits, dim=-1).item()
|
25 |
+
|
26 |
+
st.write(f"Predicted class index: {predicted_class_idx}")
|