Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_client import Client | |
import json | |
import re | |
from moviepy.editor import VideoFileClip | |
from moviepy.audio.AudioClip import AudioClip | |
def extract_audio(video_in): | |
input_video = video_in | |
output_audio = 'audio.wav' | |
# Open the video file and extract the audio | |
video_clip = VideoFileClip(input_video) | |
audio_clip = video_clip.audio | |
# Save the audio as a .wav file | |
audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files | |
print("Audio extraction complete.") | |
return 'audio.wav' | |
def get_caption_from_kosmos(image_in): | |
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/") | |
kosmos2_result = kosmos2_client.predict( | |
image_in, # str (filepath or URL to image) in 'Test Image' Image component | |
"Detailed", # str in 'Description Type' Radio component | |
fn_index=4 | |
) | |
print(f"KOSMOS2 RETURNS: {kosmos2_result}") | |
with open(kosmos2_result[1], 'r') as f: | |
data = json.load(f) | |
reconstructed_sentence = [] | |
for sublist in data: | |
reconstructed_sentence.append(sublist[0]) | |
full_sentence = ' '.join(reconstructed_sentence) | |
#print(full_sentence) | |
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)... | |
pattern = r'^Describe this image in detail:\s*(.*)$' | |
# Apply the regex pattern to extract the description text. | |
match = re.search(pattern, full_sentence) | |
if match: | |
description = match.group(1) | |
print(description) | |
else: | |
print("Unable to locate valid description.") | |
# Find the last occurrence of "." | |
last_period_index = description.rfind('.') | |
# Truncate the string up to the last period | |
truncated_caption = description[:last_period_index + 1] | |
# print(truncated_caption) | |
print(f"\n—\nIMAGE CAPTION: {truncated_caption}") | |
return truncated_caption | |
def get_caption(image_in): | |
client = Client("https://vikhyatk-moondream1.hf.space/") | |
result = client.predict( | |
image_in, # filepath in 'image' Image component | |
"provided the given image caption, generate a one sentence long description of an appropriate sound effect for the context", # str in 'Question' Textbox component | |
api_name="/answer_question" | |
) | |
print(result) | |
return result | |
def get_audioldm(prompt): | |
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/") | |
result = client.predict( | |
prompt, | |
"low quality", | |
10, | |
3.5, | |
45, | |
3, | |
fn_index=1 | |
) | |
print(result) | |
audio_result = extract_audio(result) | |
return audio_result | |
def infer(image_in, chosen_model): | |
caption = get_caption(image_in) | |
if chosen_model == "MAGNet" : | |
magnet_result = get_magnet(caption) | |
return magnet_result | |
elif chosen_model == "AudioLDM-2" : | |
audioldm_result = get_audioldm(caption) | |
return audioldm_result | |
elif chosen_model == "AudioGen" : | |
audiogen_result = get_audiogen(caption) | |
return audiogen_result | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 800px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(""" | |
<h2 style="text-align: center;"> | |
Image to SFX | |
</h2> | |
<p style="text-align: center;"> | |
Compare MAGNet, AudioLDM2 and AudioGen sound effects generation from image caption. | |
</p> | |
""") | |
with gr.Column(): | |
image_in = gr.Image(sources=["upload"], type="filepath", label="Image input", value="doggy.jpg") | |
with gr.Row(): | |
chosen_model = gr.Radio(label="Choose a model", choices=["AudioLDM-2"], value="AudioLDM-2") | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
audio_o = gr.Audio(label="Audio output") | |
submit_btn.click( | |
fn=infer, | |
inputs=[image_in, chosen_model], | |
outputs=[audio_o], | |
concurrency_limit = 4 | |
) | |
demo.queue(max_size=10).launch(debug=True) |