Spaces:
Sleeping
Sleeping
BusinessDev
commited on
Commit
•
f132c1d
1
Parent(s):
310f34e
first
Browse files
app.py
CHANGED
@@ -1,63 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Import libraries from transformers
|
5 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
6 |
+
|
7 |
+
# Define model and tokenizer
|
8 |
+
model_name = "google-bert/bert-large-uncased-whole-word-masking-finetuned-squad"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
11 |
+
|
12 |
+
|
13 |
+
def answer_question(context, question):
|
14 |
+
# Encode the context and question
|
15 |
+
inputs = tokenizer(context, question, return_tensors="pt")
|
16 |
+
|
17 |
+
# Perform question answering
|
18 |
+
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Get the predicted start and end token positions
|
21 |
+
start_scores, end_scores = outputs.start_logits, outputs.end_logits
|
22 |
+
|
23 |
+
# Decode the answer based on predicted positions
|
24 |
+
answer_start = torch.argmax(start_scores)
|
25 |
+
answer_end = torch.argmax(end_scores) + 1
|
26 |
+
|
27 |
+
# Get answer tokens and convert them to string
|
28 |
+
answer = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end])
|
29 |
+
answer = "".join(answer)
|
30 |
+
|
31 |
+
return answer
|
32 |
+
|
33 |
+
# Define the Gradio interface
|
34 |
+
interface = gr.Interface(
|
35 |
+
fn=answer_question,
|
36 |
+
inputs=[gr.Textbox("Context"), gr.Textbox("Question")],
|
37 |
+
outputs="text",
|
38 |
+
title="Question Answering with BERT",
|
39 |
+
description="Ask a question about the provided context and get an answer powered by Google BERT model.",
|
40 |
+
)
|
41 |
|
42 |
+
# Launch the Gradio app
|
43 |
+
interface.launch()
|