BusinessDev commited on
Commit
f132c1d
1 Parent(s): 310f34e
Files changed (1) hide show
  1. app.py +40 -60
app.py CHANGED
@@ -1,63 +1,43 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+
4
+ # Import libraries from transformers
5
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
6
+
7
+ # Define model and tokenizer
8
+ model_name = "google-bert/bert-large-uncased-whole-word-masking-finetuned-squad"
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
11
+
12
+
13
+ def answer_question(context, question):
14
+ # Encode the context and question
15
+ inputs = tokenizer(context, question, return_tensors="pt")
16
+
17
+ # Perform question answering
18
+ outputs = model(**inputs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ # Get the predicted start and end token positions
21
+ start_scores, end_scores = outputs.start_logits, outputs.end_logits
22
+
23
+ # Decode the answer based on predicted positions
24
+ answer_start = torch.argmax(start_scores)
25
+ answer_end = torch.argmax(end_scores) + 1
26
+
27
+ # Get answer tokens and convert them to string
28
+ answer = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end])
29
+ answer = "".join(answer)
30
+
31
+ return answer
32
+
33
+ # Define the Gradio interface
34
+ interface = gr.Interface(
35
+ fn=answer_question,
36
+ inputs=[gr.Textbox("Context"), gr.Textbox("Question")],
37
+ outputs="text",
38
+ title="Question Answering with BERT",
39
+ description="Ask a question about the provided context and get an answer powered by Google BERT model.",
40
+ )
41
 
42
+ # Launch the Gradio app
43
+ interface.launch()